
A Study on Unique Rational Operations

N. Rampersad, B. Ravikumar, N. Santean⋆ and J. Shallit

Abstract. For each basic language operation we define its “unique” counterpart
as being the operation which results in a language whose words can be obtain
uniquely through the given operation. As shown in the preliminaries of this pa-
per, these unique operations can arguably be viewed as combined basic oper-
ations, placing this work in the popular area of state complexity of combined
language operations. Considering unique rational operations, we are questioning
about their state complexity. For an answer, we provide upper bounds and em-
pirical results meant to cast light into this matter. Equally important, we hope to
have provided a generic methodology for estimating their state complexity. Yet,
the core value of this work may lay more in its initiative and approach rather than
any particular result.

Keywords: unique concatenation, unique union, unique star, state complexity

1 Introduction

Finite automata (FA) are ubiquitous objects in computer science theory as much
as in computer applications. They model finite state systems, from a door lock
to the entire Universe – in some views – and check the syntax ofregular lan-
guages. Computers are deterministic finite automata (DFA),and the English
lexicon can be spell-checked by a FA. Recently, automata have found new prac-
tical applications, such as in natural language processing[1], communications
[2] and software engineering [3] – applications increasingly demanding in terms
of computing resources. In this context, the study of state complexity of opera-
tions on FA and their languages has become a topic of paramount importance.

From the Formal Languages point of view, FA are yet another tool for defin-
ing the family of regular (or rational, as known in certain formalisms) languages,
along with regular expressions and right linear grammars. They arise from the
perpetual mathematical effort of expressing infinite objects by finite means. In
this paper we pursue a new direction in their study, namely, the succinctness of
expressing a language obtained by certainunique language operations, in terms
of the descriptional complexity of the languages involved.

Similar directions have been taken before in Automata Theory, e.g., for
basic language operations [4–7] and combined operations [8–10] on regular

⋆ corresponding author, nsantean@iusb.edu

2 Rampersad, Ravikumar, Santean & Shallit

languages. In the present paper, we make a leap from the current trends, by ad-
dressing the succinctness of some special operations; namely, we address those
operations derived from the basic ones, that reach a result in an unique man-
ner: an object obtained in two (or more) ways by applying the given operation
is excluded from the result. These unique operations can be expressed, as we
show in the beginning of Section 3, as combined basic operations (including in-
tersection, shuffle and homomorphism); nevertheless, those complex formulas
help very little in the estimation of their state complexity. In the same section we
define the so-called unireg expressions (based on unique operations) and make
the connection with unambiguous regular expressions. We prove that unireg ex-
pressions express the family of regular languages exactly.Then, we study the
closure properties of some other families of languages under these unique op-
erations. In Section 4 we give an upper bound on the state complexity of the
language of those words accepted unambiguously by an arbitrary NFA. This
construction turned out to be generic enough to provide a common approach for
the estimation of state complexity of all unique operations. We then consider
the state complexity of unique union, unique concatenationand unique star, and
establish upper bounds. Although we are not able to show thatsome bounds are
tight, there is strong empirical evidence for this fact, enforced in several experi-
ments where these upper bounds are consistently reached. InSection 5 we study
the complexity of some decision problems related to unireg expressions, namely
the membership and non-emptiness problems. Finally, in Section 6 we made a
practical connection between unique concatenation and 2-DFA with a pebble.

On a last note, this work is in progress, and there remains a great deal to be
carried out. Several directions of further research can be found in the last section
of the paper. We feel that much more needs to be done, and it is our belief that,
beside the technical aspect of this study, we succeeded to open some new doors
in the area of the state complexity of combined operations onregular languages.

2 Definitions and Notations

Let Σ be an alphabet, i.e., a nonempty, finite set of symbols (letters). By Σ ∗

we denote the set of all finite words (strings of symbols) overΣ , and byε ,
the empty word (a word having zero symbols). The operation ofconcatenation
(juxtaposition) of two wordsuandv is denoted byu·v, or simplyuv. Forw∈ Σ ∗,
we denote bywR the word obtain by reversing the order of symbols inw.

A nondeterministic finite automaton overΣ , NFA for short, is a tupleM =
(Q,Σ ,δ ,q0,F) whereQ is a finite set of states,δ : Q×(Σ ∪{ε})→ 2Q is a next-
state function,q0 is an initial state andF ⊆Q is a set of final states.δ is extended
overQ×Σ ∗ in the usual way.M is deterministic (DFA) ifδ : Q×Σ → Q. We

A Study on Unique Rational Operations 3

considercomplete DFA’s, that is, those whose transition function is a total
function.

The size ofM, size(M), is the total number of its states. When we want to
emphasize the number of states ofM, we say thatM is an n-state NFA, and
similarly for transitions. The language ofM, denoted byL(M), belongs to the
family of regular languages and consists of those words accepted byM in
the usual sense.

A state ofM is accessible if there exists a path in the associated transition
graph, starting fromq0 and ending in that state. By convention, there exists a
path from each state to itself labeled withε . A state iscoaccessible if there
exists a path from that state to some final state. A state whichis both accessible
and coaccessible is calleduseful, and an automaton which has only useful
states is calledtrim.

For a background on finite automata and regular languages we refer the
reader to [11].

Definition 1. Let L, R be languages overΣ . Byunique concatenation of L
and R, denoted as L◦R, we understand the set

L◦R= {w | w = uv, u∈ L, v∈ R, and this factorization is unique} .

Definition 2. Let L be a language overΣ . By unique star of L, denoted as
L◦, we understand the set

L◦ = {ε}∪{w | w = u1 . . .un, n∈ N, ui ∈ L\{ε} ∀1≤ i ≤ n;

and this factorization is unique}

Notice that we could have definedL◦ such that the factorization in the above
definition involvesε as well. However, in this case, ifL containedε , thenL◦

would be empty. Moreover, the connection with unambiguous regular expres-
sions (Lemma 2) could not be made. For these reasons we adopt the above
definition.

Notation wise, we denoteL⋄R= LR\(L◦R) andL⋄ = L∗ \L◦, and we refer
to these operations aspoly concatenation andpoly star. Note thatε 6∈ L⋄.
We also considerunique square andpoly square, given byL◦2 = L◦L and
L⋄2 = L2\L◦2.

Definition 3. Let L, R be languages overΣ . By unique union of L and R,

denoted as L
◦
∪R, we understand the set

L
◦
∪R= (L\R)∪ (R\L) ,

in other words, the symmetric difference of L and R.

4 Rampersad, Ravikumar, Santean & Shallit

Definition 4. By a unique regular expression, orunireg expression for
short, we understand the well-formed, parenthesized formula with the follow-
ing operators: all symbols a∈ Σ and ε are nullary, ◦ is unary, and◦, ⊕ are

binary. The operator⊕ is the counterpart of
◦
∪ in expressions.

Since{a} ◦ {b} = a◦b = ab, for any symbolsa,b ∈ Σ , we denote the unique
concatenation of symbols by juxtaposition, as for the usualconcatenation. By
convention, the empty unireg expression, enclosed or not inparentheses, de-
notes the empty set (ife = () thenL (e) = /0). The languageL (e), denoted
by unireg expressione, is defined recursively as in the case of regular expres-
sions. However, for reasons which will become apparent later, we consider only
fully-parenthesized expressions.

3 Properties

3.1 Regular Languages

In the following, we denote by the shuffle operation on words or languages.
We also use two new symbols, 1,2 6∈ Σ , and we denote byh12 the homo-
morphism which deletes these symbols in words:h12 : (Σ ∪ {1,2})∗ → Σ ∗,
h12(a) = a, ∀a∈ Σ , andh12(1) = h12(2) = ε .

Lemma 1. If L and R are regular languages then L◦R, L◦, and L
◦
∪R are regular

languages.

Proof. It is clear thatL
◦
∪R is regular. For the other two, it suffices to observe

that the languages

L⋄R= h12

(

(L1R 2)∩ (L2R 1)∩
(

Σ ∗(1Σ+2+2Σ+1)Σ ∗
)

)

and

L⋄ = h12

(

(

(L′1)∗ 2∗
)

∩
(

(L′2)∗ 1∗
)

∩
(

∆ ∗(1Σ+2+2Σ+1)∆ ∗
)

)

,

whereL′ = L\{ε} and∆ = Σ ∪{1,2}, are both regular, their definition involv-
ing operations under which regular languages are closed. Then, sinceL ◦R=
LR\ (L⋄R) andL◦ = {ε}∪L∗ \L⋄, the conclusion follows. ⊓⊔

Let Rbe a regular expression overΣ , containingr occurrences of symbols in
Σ (multiple occurrences are counted separately). DenoteΣ ′ = {a1, . . . ,ar} to be
an alphabet ofr new symbols, and considerhR : Σ ′∗ → Σ ∗ the homomorphism
which mapsai to the symbol inΣ representing thei′th occurrence of a symbol
in R. By Rh we denote the regular expression obtain fromR by replacing each

A Study on Unique Rational Operations 5

i′th occurrence of a symbol inΣ with the correspondingai ∈ Σ ′. For example, if
R= (a+ab)∗b∗, thenRh = (a1 +a2a3)

∗a∗4, andhR(a1) = hR(a2) = a, hR(a3) =
hR(a4) = b.

Definition 5. With the above notations, a regular expression R isunambiguous

if and only if the restriction of hR to L (Rh) is injective.(This definition is equiv-
alent to that given in [13].)

According to this definition, the above expressionR = (a+ ab)∗b∗ is not un-
ambiguous, sincea1a4,a2a3 ∈ L(Rh) andhR(a1a4) = hR(a2a3) = ab. An unam-
biguous regular expression “matches” any word in at most oneway.

Notice that unambiguity does not ensure unique word parsing. For example,
the regular expressionR= (a∗ +b)∗ is unambiguous; however, the wordaacan
be parsed in two ways: by iterating the first Kleene star twice, and by iterating
the second Kleene star twice - thusaahas two parsing trees. For ensuring unique
parsing, there exists another notion, that ofstrongly unambiguous regular
expression, studied e.g. in [12], and which will not be considered in this paper.

Let Rbe a fully parenthesized regular expression overΣ and denote bỹR the
unireg expression obtained fromR by replacing its regular operations by their
unique counterparts. (We stress thatRshould be fully parenthesized.)

Lemma 2. If R is unambiguous thenL (R) = L (R̃).

Proof. The proof is by induction on the number of regular operationsin R. The
case whenR has no, or only one, operation can be easily verified. Supposethat
the claim holds forn−1 operations,n≥ 2, and thatRhasn operations. We have
the cases:R= R1 ·R2, R= R1+R2 or R= R∗

1, whereR1,R2 are subexpressions of
Rconsisting of at mostn−1 operations. We treat only the first case:R= R1 ·R2,
and observe that̃R = R̃1 ◦ R̃2. First notice that ifR is unambiguous then all
its subexpressions must necessarily be unambiguous as well. Thus,R1 andR2

are unambiguous. This means, by induction hypothesis, thatL (R1) = L (R̃1)
andL (R2) = L (R̃2). Then,L (R) = L (R1 ·R2) = L (R1) ·L (R2) = L (R̃1) ·
L (R̃2). It now suffices to prove thatL (R̃1) ·L (R̃2) = L (R̃1)◦L (R̃2), in other
words, thatL (R̃1)⋄L (R̃2)= /0. Suppose there existu1,u2 ∈L (R1) andv1,v2 ∈
L (R2) such thatu1v1 = u2v2 = w. This leads to a contradiction as follows.

Let Rh be the regular expression overΣ ′, as defined previously.Rh splits into
R1

h andR2
h, which are the subexpressions corresponding toR1 andR2. Then, if a

symbolai occurs inR1
h, it cannot occur inR2

h, and vice-versa. Sincew∈ L (R)
andR is unambiguous, there exists a uniquew′ ∈ L (Rh) such thath(w′) = w.
Similarly, there exist uniquelyu′1,u

′
2 ∈ L (R1

h) and v′1,v
′
2 ∈ L (R2

h) such that
h(u′1) = u1, h(u′2) = u2, h(v′1) = v1 and h(v′2) = v2. Sinceh is a homomor-
phism, clearlyu′1v′1 = u′2v′2 = w′. Now, assume that|u1| < |u2| = t and that

6 Rampersad, Ravikumar, Santean & Shallit

w′ = ai1 . . .aik. Then,ait is a symbol occurring inR1
h by the fact thatu′2 ∈L (R1

h).
At the same time,ait is a symbol occurring inR2

h, by the fact thatv′1 ∈ L (R2
h)

andv′1 has a proper prefix which is a suffix ofu′2. But we have already made
the observation thatR1

h and R2
h cannot share common symbols, and this is a

contradiction.
In conclusion,L (R̃1) ⋄L (R̃2) = /0, L (R) = L (R̃), and the induction is

complete. ⊓⊔

Notice carefully that the converse of this lemma does not hold. Indeed, if
R= a+(a+a), thenR̃= a⊕ (a⊕a) andL (R) = L (R̃) = {a}. However,R is
obviously ambiguous.

Corollary 1. Unireg expressions define the family of regular languages.

Proof. Let L be a regular language. Without loss of generality, we may assume
thatε 6∈ L (otherwise, we construct a unireg expressionE for L \{ε} and then
consider the expressionε ⊕E for L).

Now, there exists an unambiguous regular expressionR for L – such an
expression can be obtained from a DFA forL or by an algorithm as in [13].
Let R̃be the unireg expression obtained by replacing each operation inRby the
corresponding unique operation. Then by Lemma 2 we haveL (R) = L (R̃) = L.

⊓⊔

Remark 1.Unique concatenation is not associative. Indeed, considerthe fol-
lowing examples:

1. For L1 = {b,ba2}, L2 = {a3,a4} and L3 = {ab,a2b,a3b}, we
have: (L1 ◦ L2) ◦ L3 = {ba4b,ba6b,ba9b}, and L1 ◦ (L2 ◦ L3) =
{ba4b,ba6b,ba9b,ba7b}.

2. For L1 = {b,ba}, L2 = {a3,a4}, L3 = {ab,a2b,a3b} we have:
(L1⋄L2)⋄L3 = /0 andL1⋄ (L2⋄L3) = {ba6b}.

3. Finally, the unique concatenation and unique star are unrelated: if L =
{a,b,b2} thenab2 ∈ (L◦L)◦L; howeverab2 6∈ L◦.

Notice that the reverse operation is compatible with the unique operations
and with their “poly” counterparts. Indeed, forL1,L2 ⊆ Σ ∗ we have:

(L1◦L2)
R = LR

2 ◦LR
1 , (L1

◦
∪L2)

R = LR
1

◦
∪LR

2, (L◦
1)

R = (LR
1)◦,

(L1⋄L2)
R = LR

2 ⋄LR
1 , (L1∩L2)

R = LR
1 ∩LR

2, (L⋄
1)

R = (LR
1)⋄.

Reviewing the notation, we have:

A Study on Unique Rational Operations 7

- unique concatenationL1◦L2, and poly concatenation:L1⋄L2,
- unique starL◦, and poly starL⋄,
- unique squareL◦2 = L◦L, and poly squareL⋄2 = L⋄L,

- unique unionL1
◦
∪L2, and poly unionL1

⋄
∪L2,

- for completeness, we also denoteunique shuffle L1
◦

L2, and poly

shuffle L1
⋄

L2.

Various connections among these operations can be drawn. For example,

Lemma 3. If L is an arbitrary language then

(L∗ \{ε})⋄2 = L⋄, and(L∗ \{ε})◦2 = L◦ \{ε}.

Proof. (sketch) If w ∈ L⋄ then w 6= ε , w = u1u2 . . .ui = v1v2 . . .v j , with
u1, ...,ui ,v1, ...,v j ∈ L , and there existsk such thatu1 = v1, . . . , uk−1 = vk−1

and uk 6= vk. Thenx = u1 . . .uk ∈ L∗, y = uk+1 . . .ui ∈ L∗, x′ = v1 . . .vk ∈ L∗,
y′ = vk+1 . . .v j ∈ L∗, x 6= x′, y 6= y′, xy= x′y′ ∈ L∗ \{ε}. Thus,w∈ (L∗ \{ε})⋄
(L∗ \{ε}). Conversely, ifw∈ (L∗ \{ε})⋄2 thenw= xyz, with x,xy,yz,z∈ L∗ and
y 6= ε . Clearlyw∈ L∗, and it has two different factorizations into words inL.

If w∈ L◦ \{ε}, suppose by contradiction thatw = xyzwith x,xy,yz,z∈ L∗ \
{ε}. Then denoteu= x,v = yz,u′ = xy,v′ = z, andu,u′,v,v′ ∈ L∗. It is clear that
uv= u′v′ ∈ L∗, thusw∈ L⋄. This contradicts the fact thatw∈ L◦, for L◦∩L⋄ = /0.
Conversely, ifw∈ (L∗ \{ε})◦ (L∗ \{ε}) thenw 6= ε and suppose by contradic-
tion thatw 6∈ L◦. Thenw = u1u2 . . .ui = v1v2 . . .v j , with u1, ...,ui ,v1, ...,v j ∈ L,
and there exists ak such thatu1 = v1, . . . ,uk−1 = vk−1 anduk 6= vk. If we de-
notex = u1 . . .uk, y = uk+1 . . .ui , x′ = v1 . . .vk, andy′ = vk+1 . . .v j , we have that
x,y,x′,y′ ∈ L∗, thusxy∈ L∗, x′y′ ∈ L∗, and they denote two distinct factorizations
of w into words inL. Thusw∈ L⋄ - a contradiction. ⊓⊔

3.2 Context-Free Languages

Proposition 1. The following families are not closed under unique union: DCF,
CF, and linear CF.

Proof. It is clear thatΣ ∗
◦
∪L = L. However, it is well-known that the families

CF and linear CF are not closed under complement.
For the case of the family DCF, letL1 = {aib jck : i 6= j} andL2 = {aib jck :

j 6= k}. ClearlyL1 andL2 are deterministic CFL’s. Then

L1
◦
∪L2 = {aib jck : i = j 6= k or i 6= j = k}.

8 Rampersad, Ravikumar, Santean & Shallit

We claim thatL1
◦
∪L2 is not context-free. Suppose it is and letn be the constant

of Ogden’s lemma. Letz= anbncn+n! and mark theb’s. Let z= uvwxybe a de-
composition satisfying the conditions of Ogden’s lemma. Wehave the following
cases:

- v = ap andx = bq. If p= q, thenuvn!/pwxn!/qy = an+n!bn+n!cn+n! /∈ L1
◦
∪L2.

If p 6= q, then clearlyuv2wx2y /∈ L1
◦
∪L2.

- v = bp andx = cq. Then clearlyuv2wx2y /∈ L1
◦
∪L2.

- vwx= bp. Then clearlyuv2wx2y /∈ L1
◦
∪L2.

Thus the decompositionz = uvxwy fails to satisfy the conditions of Ogden’s

lemma, a contradiction; we conclude thatL1
◦
∪L2 is not context-free, as required.

⊓⊔

Proposition 2. The following families are not closed under unique concatena-
tion: DCF, CF and linear CF.

Proof. Consider the following CFL:L1 = {an | n ≥ 1} ∪ {anbn | n ≥ 1} and
L2 = {cn | n≥ 1}∪{bncn | n≥ 1}. It is easy to see that

L1◦L2 = {ancm | m,n≥ 1}∪{anbn+mcm | m,n≥ 1}∪

∪{anbmcm | m 6= n;m,n≥ 1}∪{anbncm | m 6= n;m,n≥ 1},

that is, the only words inL1 ·L2 which can be written as a concatenation in more
than one way areanbncn, n≥ 1. We can prove thatL1◦L2 is not context-free by
Ogden’s lemma.

Assume by contradiction that it is, and letN be the constant of Ogden’s
lemma. Take the wordz= aNbNcN+N! ∈ L1◦L2. By Ogden’s lemma, if we mark
thea’s, there exists a factorizationz= uvwxysuch thatvxhas at least one marked
symbol,vwxhas at mostN marked symbols anduviwxiy∈ L1◦L2 for all i ≥ 0.
One can observe that such factorization must necessarily havev= at andx= bt ,
0 < t ≤ N. But then, fori = 1+ N!/t we haveuviwxiy = aN+N!bN+N!cN+N!

contradicting that such word must not be inL1◦L2.
SinceL1 andL2 are both deterministic and linear CF languages, the conclu-

sion follows. ⊓⊔

Finally, we show the following claim about unique Kleene star.

Proposition 3. The following families are not closed under unique Kleene star:
CF and linear CF.

A Study on Unique Rational Operations 9

Proof. Let L1 and L2 be as in the previous proposition. Clearly,L1 ∪ L2 is
context-free. We can show that(L1∪L2)

◦ is not context-free. In fact, it is easy
to see that

(L1∪L2)
◦∩a∗b∗c∗ = {ancm | m,n≥ 1}∪{anbn+mcm | m,n≥ 1}∪

∪{anbmcm | m 6= n;m,n≥ 1}∪{anbncm | m 6= n;m,n≥ 1}∪

∪{an+mbm | m,n≥ 1}∪{bncn+m | m,n≥ 1}

It can be shown as before that this is not a CFL language. From this, it
follows that CFL is not closed under unique star. SinceL1∪L2 is a linear CFL,
it follows that linear CFL is not closed under unique star. ⊓⊔

4 State Complexity

Before dealing with the state complexity of unique operations, we first prove the
following result. The idea behind the construction given inthe proof will be use-
ful in proving upper bounds for the state complexities of unique concatenation
and unique star.

Lemma 4. Let A be an NFA with noε-transitions, of size m, and let L be the
language of those words inΣ ∗ which are accepted unambiguously by A. Then L
is regular and its state complexity is at most3m−2m+1.

Proof. We construct a DFA whose states are vectors withmcomponents, show-
ing the number of paths from the initial state to each state: 0, 1 or 2 (standing
for “two or more paths”). The final states are those vectors which denote exactly
one path to one final state of the initial NFA.

Formally, let A = (QA,Σ ,δA,qA,FA). We construct a DFA B =
(QB,Σ ,δB,qB,FB) for L of size 3m−2m+1 as follows:

1. QB = VB −V ′
B ∪{s}, whereVB is the set of vectors withm elements, each

element taking values in{0,1,2}, andV ′
B is the subset ofVB consisting of

those vectors that do not have the value 1 in any component. Clearly,|QB|=
3m−2m+1. Stateshas the role of a sink state.

2. qB = (1,0, . . . ,0), FB is the set of all vectorsv such that the sum of all com-
ponents ofv corresponding to the final states ofA is precisely 1.

3. For alla∈ Σ , we denote byMa the incidence matrix ofA with respect to the
symbola. Then, for allv∈VB−V ′

B,

δB(v,a) =

{

vMa if vMa /∈V ′
B

s if vMa ∈V ′
B,

10 Rampersad, Ravikumar, Santean & Shallit

andδB(s,a) = s. Here the matrix multiplication is done as usual, but with⊕
and⊗ as component-wise addition and multiplication, describedas follows:
for a,b∈ {0,1,2}, we definea⊕b= min(a+b,2) anda⊗b = min(a·b,2).
(See [14] for an early use of these operations.)

⊓⊔

Notice that the construction can be modified to recognize thelanguage
of those words which are accepted ambiguously by the NFA: just make the
appropriate states final. Since this symmetry holds for mostconstructions
proposed throughout the paper, we make, a priori, the following conjecture:

Conjecture.The state complexity results on unique operations (which will be
described in the sequel) hold for “poly” operations as well.

While we cannot currently show that the bound given in Lemma 4is tight,
we can give an exponential lower bound, as follows. Fork≥ 0, define a language

Lk = (0+1)∗0(0+1)k1(0+1)∗.

The languagesLk (or variations thereof) have been used by several authors [15–
18] to prove lower bounds for non-deterministic state complexity. The language
Lk consists of all words containingat least one occurrenceof a word in 0(0+
1)k1.

Now consider the language

ULk = (0⊕1)◦ ◦0(0⊕1)k1◦ (0⊕1)◦

obtained from the regular expression forLk by replacing the ordinary operations
with the unique ones. The languageULk consists of all words containingexactly
one occurrenceof a word in 0(0+1)k1.

Lemma 5. Any NFA accepting ULk has at least2k states.

Proof. For every wordx ∈ {0,1}k, define a pair(0x,1x). Note that 0x1x is in
ULk, since there is exactly one instance where a 0 is followed by a1 k positions
later. However, for any 2 distinct wordsx andy, at least one of the words 0x1y
or 0y1x must containtwooccurrences of a subword in 0(0+1)k1 (sincex andy
must mismatch in at least one place). Thus, at least one of 0x1y or 0y1x is not in
L. Since there are 2k pairs, it follows from a result of Birget [19] that any NFA
for ULk has at least 2k states. ⊓⊔

We easily deduce the following results.

A Study on Unique Rational Operations 11

Proposition 4. There exists an NFA Mk with O(k) states such that any DFA,
NFA, or regular expression for the set of words accepted unambiguously by Mk

has size at least2k.

Proof. The languageLk is accepted by an NFAMk with O(k) states. The set of
words accepted unambiguously byMk is exactlyULk. The result now follows
from Lemma 5. ⊓⊔

Proposition 5. There exists a regular language generated by a unireg expres-
sion of size O(k) such that any equivalent DFA, NFA, or regular expression has
size at least2k.

Proof. The languageULk has the desired properties. ⊓⊔

4.1 Unique Union

For the unique union, we observe that given two DFAA andB, of sizem and

n respectively, we can easily construct a DFA of sizemn for L(A)
◦
∪L(B) by

performing the cross-product ofA andB and by setting as final states those state
pairs which have exactly one component final. We prove that this upper bound
of mn is tight.

Theorem 1. For m,n ≥ 3, let L1 and L2 be accepted by DFA’s with m and n

states respectively. The state complexity of L1
◦
∪L2 is mn.

Proof. Form,n≥ 3, we use the languages

A = {w∈ {0,1}∗ : |w|0 ≡ m−1 modm}

and
B = {w∈ {0,1}∗ : |w|1 ≡ n−1 modn},

which were used by Maslov [20] to prove a similar result for the ordinary union.
Clearly,A is accepted by anm-state DFA,B is accepted by ann-state DFA, and

C= A
◦
∪B is accepted by anmn-state DFA. We show thatmnstates are necessary.

For integersi, i′ and j, j ′, 0≤ i, i′ ≤ m−1 and 0≤ j, j ′ ≤ n−1, letx = 0i1 j

andy = 0i′1 j ′ be distinct words. To complete the proof it is enough to show that
x andy are inequivalent with respect to the Myhill–Nerode equivalence relation.
We have several cases.

Case 1:i, i′ < m− 1 and j ′, j ′ < n− 1. If i 6= i′, then x0m−1−i ∈ C and
y0m−1−i /∈ C, so x and y are inequivalent. Ifj 6= j ′, then x1n−1− j ∈ C and
y1n−1− j /∈C, sox andy are again inequivalent.

12 Rampersad, Ravikumar, Santean & Shallit

Case 2:i, i′ = m−1, and j, j ′ < n−1. Thenx1n−1− j /∈C andy1n−1− j ∈C,
sox andy are inequivalent.

Case 3:i, i′ < m−1 and j, j ′ = n−1. Thenx0m−1−i /∈C andy0m−1−i ∈C,
sox andy are inequivalent.

Case 4:i < m− 1, j < n− 1, i′ = m− 1, and j ′ < n− 1. Thenx /∈ C and
y∈C, sox andy are inequivalent.

Case 5:i < m− 1, j < n− 1, i′ < m− 1, and j ′ = n− 1. Thenx /∈ C and
y∈C, sox andy are inequivalent.

Case 6:i < m−1, j = n−1, i′ = m−1, and j ′ < n−1. If i < m−2, then
x0 ∈ C and y0 /∈ C. If j ′ < n− 2, thenx1 /∈ C and y1 ∈ C. If i = m− 2 and
j ′ = n−2, thenx00∈C andy00 /∈C. Thusx andy are inequivalent.

Case 7:i = m− 1, and j = n− 1. If either i′ = m− 1 or j ′ = n− 2, then
x /∈C andy∈C, sox andy are inequivalent. Otherwise, apply the argument of
one of the preceding cases, as appropriate, tox0 andy0 to show thatx andy are
inequivalent.

Thus allmndistinct pairsx,y are inequivalent. It follows that any DFA ac-
ceptingC has at leastmnstates. This completes the proof. ⊓⊔

We now approach the more difficult problem of determining thestate com-
plexities of unique concatenation and unique star.

4.2 Unique Concatenation

We start with a naive approach, aiming at implementing the poly concatenation
first, and then derive the unique operation.

Let A = (QA,Σ ,δA,sA,FA) andB = (QB,Σ ,δB,sB,FB) acceptL1 andL2, re-
spectively. Define an NFAM = (QC,Σ ,δC,sC,FC) as follows:

QC = QA∪ (QA×QB)∪ (QB×QB), sC = sA and
FC = FB×FB if sB 6∈ FB

FC = FB×FB∪FA×FB, else.
δC is defined as follows (a∈ Σ) :

δC(q,a) = {δA(q,a)} if q is in QA−FA,
δC(q,a) = {δA(q,a), [δA(q,a),δ (sB,a)]} if q is in FA,
δC([q, r],a) = {[δA(q,a),δB(r,a)]} if [q, r] is in (QA−FA)×QB,
δC([q, r],a) = {[δA(q,a),δB(r,a)], [δB(sB,a),δB(r,a)]} if [q, r]∈FA×QB,
δC([q, r],a) = {[δB(q,a),δB(r,a)]} if [q, r] is in QB×QB.

The following observations are straightforward:

A Study on Unique Rational Operations 13

(i) L1◦L2 = L(C)∩L1L2.

(ii) The number of states inC is m+mn+n2.

The number of states inC can be reduced tom+ n+ mn+
(n

2

)

by observing
that the ordered pairs[p,q], [q, p] ∈ QB×QB are indistinguishable and can be
merged. When converting this NFA into a DFA, note that every subset contains
exactly one occurrence of a set fromQA and hence the number of subsets gen-
erated is at mostm2mn+n(n+1)/2.

A tight upper-bound on the number of states in a DFA acceptingL1L2 was
obtained in [21], as beingm2n−k2n−1, wherek is the number of final states in
A. From these, it follows that an upper-bound on the number of states in a DFA
acceptingL(A)◦L(B) is given bym2mn+n(n+1)/2(m2n−k2n−1).

However, we can do better than this, by constructing a DFA forthe unique
concatenation directly, as shown in the proof of the following result.

Theorem 2. The state complexity of unique concatenation for regular lan-
guages is at most m3n− k3n−1, where m and n are the sizes of the input DFAs,
and k is the number of final states of the first DFA.

Proof. (sketch) LetA = (QA,Σ ,δA,qA,FA) and B = (QB,Σ ,δB,qB,FB) be the
input DFAs, of sizem andn respectively. For proving the upper bound we con-
struct a DFAC = (QC,Σ ,δC,qC,FC) for L(A)◦L(B), of sizem3n−k3n−1:

1. QC = QA×VB−FA×V ′
B, whereVB is the set of vectors withn elements, each

element taking values in{0,1,2}, andV ′
B is the subset ofVB consisting of

those vectors which have 0 in their first component. Clearly,|QC| = m3n−
k3n−1.

2. qC = 〈qA,(0, . . . ,0)〉 if qA 6∈ FA and qC = 〈qA,(1,0, . . . ,0)〉 otherwise,FC

is the set of those states〈q,v〉 such that the sum of all components ofv
corresponding to the final states ofB is precisely 1.

3. For alla∈ Σ , we denote byMa the incidence matrix ofB with respect to the
symbola. ThenδC(〈q,v〉,a) = 〈δa(q,a),v′〉, wherev′ = vMa if δ (q,a) 6∈ FA

andv′ = vMa +(1,0. . . ,0) otherwise. The matrix multiplication is done as
usual, but with⊕ and⊗ as component-wise addition and multiplication,
operations described in the proof of Lemma 4.

The idea of this construction was to compute the “multiplicity” of ambiguous
computations of the NFA forL(A)L(B), as inspired by the proof of Lemma 4.

⊓⊔

14 Rampersad, Ravikumar, Santean & Shallit

Considering the DFANn in Figure 1, we have found that this DFA is a state com-
plexity worst-case for unique square, proving that the upper bound is reached
for this operation:

n−1

a

. . .
b a,b a,b

a,b

n−210

Fig. 1. Nn: a worst case for unique square.

Lemma 6. For n≥ 3, the state complexity of L(Nn)
◦2 is n3n−3n−1, thus this is

a sharp upper bound for unique square (when k= 1).

Proof. We prove that the construction in the proof of Theorem 2 leadsto a
minimal DFA, by proving its total reachability and non-mergibility. Consider
that the states ofNn are numbered (and named) from 0 ton−1, and recall that
the corresponding DFA (as constructed in Theorem 2) has states of the form
〈i,(x1, . . .xn)〉, wherex j ∈ {0,1,2} and the component-wise operations of the
vector(x1, . . .xn) arex⊕y= min(x+y,2) andx⊗y= min(xy,2). The adjacency
matrices forNn are:

Ma =

















1 0 0 0. . . 0
0 0 1 0. . . 0
0 0 0 1. . . 0

. . .
0 0 0 0. . . 1
1 0 0 0. . . 0

















, Mb =

















0 1 0 0. . . 0
0 0 1 0. . . 0
0 0 0 1. . . 0

. . .
0 0 0 0. . . 1
1 0 0 0. . . 0

















.

The following facts about state transitions will be useful later:

〈0,(x1, . . . ,xn)〉
a

−→ 〈0,(x1⊕xn,0,x2, . . . ,xn−1)〉 ,
〈i,(x1, . . . ,xn)〉

a
−→ 〈i +1 modn,(x1⊕xn,0,x2, . . . ,xn−1)〉,∀i 6= 0 ,

〈 j,(x1, . . . ,xn)〉
b

−→ 〈 j +1 modn,(xn,x1, . . . ,xn−1)〉,∀ j 6= n−2 ,

〈n−2,(x1, . . . ,xn)〉
b

−→ 〈n−1,(xn⊕1,x1, . . . ,xn−1)〉 ,

〈0,(x1, . . . ,xn)〉
bn

−→ 〈0,(x1,x2⊕1,x3, . . . ,xn)〉 ,

A Study on Unique Rational Operations 15

〈1,(x1, . . . ,xn)〉
bn

−→ 〈1,(x1,x2,x3⊕1,x4, . . . ,xn)〉 ,

. . .

〈 j,(x1, . . . ,xn)〉
bn

−→ 〈 j,(x1,x2, . . . ,x j+2⊕1, . . . ,xn)〉,∀ j 6= n−1 ,

. . .

〈n−2,(x1, . . . ,xn)〉
bn

−→ 〈n−2,(x1,x2, . . . ,xn⊕1)〉 ,

〈n−1,(x1, . . . ,xn)〉
bn

−→ 〈n−1,(x1⊕1,x2, . . . ,xn)〉 .

I. Reachability

We show that any state〈i,(x1, . . . ,xn)〉) of our DFA is reachable from the
initial state〈0,(0, . . . ,0)〉.The following computation proves it:

〈0,(0, . . . ,0)〉
bnx1
−→ 〈0,(0,x1,0. . . ,0)〉

a
−→

a
−→ 〈0,(0,0,x1,0, . . .0)〉

bnxn

−→ 〈0,(0,xn,x1,0, . . .0)〉
a

−→
a

−→ 〈0,(0,0,xn,x1,0, . . .0)〉
bnxn−1
−→ 〈0,(0,xn−1,xn,x1,0, . . .0)〉

a
−→

. . .
a

−→ 〈0,(0,0,x4, . . . ,xn,x1)〉
bnx3
−→ 〈0,(0,x3, . . . ,xn,x1,)〉

a
−→

a
−→ 〈0,(x1,0,x3, . . . ,xn)〉

bnx2
−→ 〈0,(x1,x2, . . . ,xn)〉

Thus, from the initial state we can reach an arbitrary state〈0,(x1, . . . ,xn)〉. For
reaching〈i,(x1, . . . ,xn)〉, with i < n−1, we first reach〈0,(xi+1, . . . ,xn,x1 . . .xi)〉

and then we apply the wordbi : 〈0,(xi+1, . . . ,xn,x1 . . .xi)〉
bi

−→ 〈i,(x1, . . .xn)〉.
For reaching〈n− 1,(x1, . . . ,xn)〉, with x1 > 0 (recall thatx1 can not be 0 in
this case), we first reach〈0,(xn,x1−1, . . . ,xn−1)〉, then we applybn−2 reaching
〈n−2,(x2, . . . ,xn,x1−1)〉, and then we applyb one more time.

II. Non-mergibility

We prove that no two distinct states〈i,(x1, . . . ,xn)〉 and〈 j,(y1, . . . ,yn)〉 are
mergible, by finding a word which maps one of these states intoa final state
and maps the other into a non-final state. Incidentally, it becomes apparent that
our DFA has no sink state.

(case 1: i 6= j) We choose the wordan−ibnan−2, and obtain the following
computations:

〈i,(x1, . . .xn)〉
an−i−1

−→ 〈n−1,(1⊕x1⊕∑n
j=i+2x j ,0, . . .0,x2, . . . ,xi+1)〉

a
−→

a
−→ 〈0,(1⊕x1⊕∑n

j=i+1x j ,0, . . . ,0,x2, . . .xi)〉
bn

−→

16 Rampersad, Ravikumar, Santean & Shallit

bn

−→ 〈0,(1⊕x1⊕∑n
j=i+1x j ,1,0, . . . ,0,x2, . . .xi)〉

an−2

−→
an−2

−→ 〈n−2,(1⊕∑n
j=1x j ,0, . . . ,0,1)〉 ,

thus we reach a final state. For the other state we have the following computa-
tion:

〈 j,(y1, . . .yn)〉
an−i

−→ 〈 j +n− i modn,(∑(−),0, . . . ,0,y2, . . .yi)〉
bn

−→
bn

−→ 〈 j +n− i modn,(∑(−),0, . . . ,1, . . . ,y2, . . .yi)〉
an−2

−→ (∗)
an−2

−→ 〈 j +n− i modn,(∑(−),0, . . . ,1, . . . ,0)〉

and a final state is not reached. In step marked(∗), 1 appears at position
j + n− i + 2 modn, and on the second position we necessarily have 0, since
j 6= i (hence 26= j + n− i modn). By the end of the computation, the value 0
on the second position migrates to the end of the vector; thusthe computation
fails. Recall thatn≥ 3 thusn−2≥ 1 and the last step has at least one transition.

(case 2: i= j) Since the states are distinct, there exists a positionk such that
xk 6= yk. Without loss of generality we may assume thatxk < yk (otherwise we
flip the states). We distinguish the following subcases:

1. (xk = 1 oryk = 1) Forxk = 1 we use the wordbn−k (recall thatxk 6= yk), and
for yk = 1 we flip the states.

2. (xk = 0,yk = 2) We distinguish two situations. Ifk = i + 2 we have the
following computations:

〈i,(x1, . . .xn)〉
bn−i−1

−→ 〈n−1,(1 = xk⊕1,xk+1, . . . ,xk−1)〉
bn−1

−→
bn−1

−→ 〈n−2,(xk+1, . . .xn,x1, . . . ,1)〉 ,

which ends in a final state, whereas the same word maps the state
〈i,(y1, . . .yn)〉 into a non-final state, foryk ⊕ 1 = 2. Thus the wordb2n−i−2

solves this case. Ifk 6= i +2 we have the following generic computation:

〈i,(x1, . . .xn)〉
bn−k+2

−→ 〈∗,(xk−1,xk, . . .xn,x1, . . . ,xk−2))〉
an−2

−→
an−2

−→ 〈∗,(z,0, . . . ,0,xk)〉
b

−→
b

−→ 〈∗,(xk,z,0, . . . ,0)〉
a

−→
a

−→ 〈t,(xk,0,z,0, . . . ,0)〉 ,

A Study on Unique Rational Operations 17

with some t ∈ {0, . . . ,n − 1} and z ∈ {0,1,2}. From here, there ex-
ists a word w = ar which continues the computation up to〈∗,(1 =
xk ⊕ 1,0, . . .0,z,0, . . . ,0)〉, and after that, the wordbn−1 leads to the
state〈∗,(0, . . .0,z,0, . . . ,0,1)〉. Thus, the wordbn−k+2an−2bawbn−1 maps
〈i,(x1, . . . ,xn)〉 to a final state, however, this is not true for〈i,(y1, . . . ,yn)〉.

We have proven the non-mergibility as well, thus the DFA is minimal, and its
size is exactly the upper bound for unique square. ⊓⊔

Remark 2.This combinatorial proof does not work forn = 2. We were expect-
ing this, for we verified experimentally that the upper boundis not reached for
2-state DFAs.

We can also prove the following exponential lower bound for the non-
deterministic state complexity of unique concatenation.

Proposition 6. There exists a pair of NFA’s M1 and M2 with O(k) states com-
bined, such that L(M1)L(M2) is accepted by an O(k) state NFA, but any NFA
accepting L(M1)◦L(M2) has at least2k states.

Proof. Take L(M1) = (0 + 1)∗0(0 + 1)k1 and L(M2) = (0 + 1)∗. Then
L(M1)L(M2) is accepted by anO(k) state NFA, but any NFA acceptingL(M1)◦
L(M2) = ULk has at least 2k states. ⊓⊔

Unique Concatenation: Empirical Results

Experiment 1. (description) We generate all minimal DFA with 3 states
and perform unique concatenation on all pairs. There are 1028 distinct DFA,
leading to 1056784 operations. Figure 2 provides a histogram of our results: the
x-axis represents the size of the output DFA, and the y-axis plots the number of
cases which resulted in DFAs of that size.

For two DFAs of sizem andn, the theoretical upper bound ism3n− k3n−1

(k is the number of final states in the first DFA). The largest DFAsobtained in
this experiment are of size 72, and are the result of operations where the first
DFA has precisely one final state. Thus the bound is reached for m= n = 3 and
k = 1. Notice that small DFAs have a higher incidence rate, hinting at the fact
that the worst-case scenarios are sparse.

Quite interestingly, the upper bound is not reached form = n = 2: we
gave a possible explanation for this in Remark 2. The histogram of unique

18 Rampersad, Ravikumar, Santean & Shallit

Fig. 2. Histogram for unique concatenation over 3-state minimal DFA.

concatenation in this case is shown in Figure 3. Notice that no operation reaches
15 states (14 is the largest value reached). Moreover, for the unique square in
this case, the largest reached size is 12.

Experiment 2. (description) Initially we investigated whether the unique
square operation has a smaller state complexity. For this weperformed this op-
eration for all minimal DFA of size 3 and 4. The results (histograms) are shown
in Figure 4 and Figure 5. We found 6 minimal DFA of size 3 (with one final
state) whose unique square reaches the upper bound of 72.

Experiment 3. (description) We also questioned whether the worst-case sce-
narios for the standard concatenation are also worst for theunique concatena-
tion. Thus, we took 16 pairs of DFA which have been proven in [22] to reach
the upper bound for concatenation (form,n∈ {2,3,4,5}) and performed their
unique concatenation. In the following table, the numbers in parentheses are the
upper bounds for unique concatenation, and the other numbers are the results
obtained in our experiment.

A Study on Unique Rational Operations 19

Fig. 3. Histogram for unique concatenation over 2-state minimal DFA.

m\n 2 3 4 5

2 9 (15) 29 (45) 88 (135) 267 (405)
3 15 (24) 61 (72) 158 (216) 565 (648)
4 24 (33) 69 (99) 267 (297) 807 (891)
5 27 (42) 113 (126) 283 (378) 1049 (1134)

We observe that none of these examples are reaching upper bounds for unique
concatenation, thus it is not necessary that the worst-cases for concatenation
are worst for unique concatenation as well. We will see laterthat the reciprocal
may be true: worst-case examples for unique concatenation may be worst for
concatenation as well.

Candidates for a generic example. Consider the two parameterized
minimal DFA: Ji and Ni, with i ≥ 3, as shown in Figure 6. Our experiments
show that the upper bound is reached for any of the following combinations:
L(Ji)

◦2, L(Ni)
◦2, L(Ji) ◦ L(Jj), L(Ni) ◦ L(Nj), L(Ji) ◦ L(Nj), with i, j arbitrary

integers greater than 2. It is interesting to notice thatJi is given in [23] as ex-
ample for reaching the upper bound for the normal concatenation, hence it may
provide an example where worst-case is achieved for both concatenation and
unique concatenation.

20 Rampersad, Ravikumar, Santean & Shallit

Fig. 4. Histogram for unique square over 3-state minimal DFA.

4.3 Unique Star

As before, we start with a naive approach. LetA be a DFA for a regular lan-
guageL, of sizem, andB be the NFA acceptingL+, obtained by the standard
construction without employingε (B hasm+ 1 states). Recall thatε is a by-
product of unique star and that poly star cannot produce it. An NFA for L⋄

works as follows. We start by simulatingA. When we nondeterministically hit
a final state ofB (i.e., we may not stop at the first hit), we start simulating two
copies ofB in parallel (cross product), one continuing the initial computation,
the other starting from the initial state. The input is accepted when both sim-
ulations accept. This NFA hasm+ 1 state in the first module andm2 in the
second. Thus we havem2 + m+ 1 states NFA which implements the poly star
(it accepts all those words which have more than one factorization into words
in L). SinceL◦ = L∗ \L⋄, we obtain a first upper bound for the unique star, of
2m2+m+1(2m−1 + 2m−k−1), wherek is the number of final states ofA which are
not initial.

By using a technique similar to that for unique concatenation we can sub-
stantially improve this upper bound:

Theorem 3. If L \{ε} is accepted by a DFA A of size m and with k final states,
then a DFA for L◦ has at most3m−1 +(k+2)3m−k−1− (2m−1 +2m−k−1−2).

(this upper bound has been reached for k= 1 and m= 2, . . . ,8 by the generic
examples in Figure 11 – thus we conjecture that it is sharp)

A Study on Unique Rational Operations 21

Fig. 5. Histogram for unique square over 4-state minimal DFA.

Ji :

Ni :

a

b b

a

. . .

a a

a,b

. . .
b

a

b a,b

1

1

2

2

3 i

i

a,b

b

Fig. 6. Parameterized automataJi andNi .

Proof. Let A = (QA = {1,2, . . . ,m},Σ ,δA,1,FA) be a DFA forL, of size m,
andFA = {m−k+1, . . . ,m}. By Ma we denote the adjacency matrix ofA with
respect to the symbola∈ Σ . ThusMa[i, j] is 1 if there is a transition fromi to j
labeled witha, and 0 otherwise.

Denote, as before,⊕ and⊗ to be two operations given bya⊕b = min(a+
b,2) anda⊗b = min(a·b,2). We define a DFAB = (QB,Σ ,δB,0,FB) for L◦ as
follows:

1. QB = V ∪{0}, where 0 is the initial state ofB andV is the set of all vec-
tors with m components holding values in{0,1,2}. The vector entries are
indexed from 1 tom.

2. The transition function is defined as follows:

22 Rampersad, Ravikumar, Santean & Shallit

(a) δB(0,a) = va, whereva[δA(1,a)] = 1, va[1] = 1 if δA(1,a) ∈ FA, and
va[i] = 0 for all other indicesi.

(b) DenoteSk[v] to be the valuev[m− k + 1] ⊕ ·· · ⊕ v[m]. For all j ∈
{1, . . . ,m} anda ∈ Σ we setδB(v,a) = v′ + v′′, wherev′ = v⊗Ma and
v′′ = (Sk(v′),0,0, . . . ,0).

3. FB = {v∈V | Sk(v) = 1}∪{0}.

We use vectors to store the number of computations inA, from the initial state
to every state: 0, 1, or 2 (2 = more than one computation). If a vector v is
reached during the computation ofB, the valueSk(v) gives the number of differ-
ent computations inA reaching final states. This number has been added to the
first component ofv, meaning that reaching a final state inA implies reaching its
initial state as well, for we aim at accepting words inL∗. If a wordw “reaches”
a state-vectorv in B, then v[i] gives the number (0,1, or 2) of distinct paths in
A, labeled withw, from the initial state ofA to its statei, whenA is modified
to acceptL∗ in the standard way. By setting as final state inB all those vectors
which denote exactly one successful such path, we forceB accept exactly the
words inL◦.

It now remains to compute how many states can possibly be reached inB.
First, B will have an initial state and, eventually, a sink state. We make two
crucial observations: (a) for a reachable statev∈V we must havev[1] ≥ Sk(v),
and (b) any reachable statev∈V containing only values 0 and 2 is mergible into
(or, equivalent to) the sink state. Indeed, the first observation is justified by the
fact that a reachable statev accumulates inv[1] the valueSk(v), according toδB.
For the second observation we notice that ifv contains only 0’s and 2’s, then
δB(v,a) will have the same property. Moreover, such state cannot be final. We
are now ready to compute the maximum number of reachable states thatB can
have,after an eventual minimization:

1. There is an initial state 0 and eventually a sink state, amounting for 2 states,
to begin with.

2. At most 3m−k−1 vectorsv with Sk(v) = 0 can be reached. Indeed they are
3m−k such vectors; however the null vector cannot be reached. From these
vectors, we subtract those having only 0’s and 2’s, for they will eventually be
merged together within a sink state whenB is minimized. There are 2m−k−1
such vectors, without counting the null vector. Thus, we have altogether
3m−k−2m−k statesin this case.

3. At most 2k ·3m−k−1 statesv with Sk(v) = 1 can be reached. Observe that
onceSk(v) = 1 we can not havev[1] = 0 sinceSk(v) has been added to
v[1] during an eventual transition. Thus,v[1] can take two values (1 and 2),
then the portion of the vectorv[2, . . . ,m− k] gives 3m−k−1 combinations,

A Study on Unique Rational Operations 23

and there are at mostk combinations ofv[m− k+ 1, . . . ,m] which ensure
Sk(v) = 1.

4. Finally, at most 3m−k−1(3k− k−1) statesv with Sk(v) = 2 can be reached.
Indeed, we have at most 3k−k−1 combinations inv[m−k+1, . . . ,m] which
ensureSk(v) = 2. Thenv[1] must be 2 (sinceSk(v) has been added to it), and
there are 3m−k−1 combinations forv[2. . .m− k]. However, some of these
vectors are surely mergible into the sink state: those with only 0′s and 2’s.
There are exactly 2m−k−1(2k − 1) such vectorsv, since:v[1] = 2, there are
(2k−1) combinations inv[m−k+1, . . . ,m] (this portion cannot be all 0’s),
and there are 2m−k−1 combinations of 0’s and 2’s inv[2, . . . ,m−k]. Combin-
ing all these numbers, we obtain 3m−k−1(3k−k−1)−2m−k−1(2k−1) states
in this case.

We reach the conclusion by adding up the figures underlined inthe above cases
1-4. ⊓⊔

The case whenε ∈ L and we are given a DFA forL is proven similarly,
and may lead to a slightly different upper bound. As a matter of fact, we can
immediately derive an upper bound by noticing that a DFA forL \ {ε} has at
most one state more than the DFA forL (thus, we just replacemby m+1 in the
above result). Nevertheless, a proof as in Theorem 3 may improve such upper
bound, and it merely involves a different state-indexing scheme. We leave this
exercise to the reader.

Unique Star: Empirical Results

Our experiments show that this upper bound is very likely sharp, in bothn
andk. In Figures 7, 8, 9 and 10 one can find the histograms forn = 2, . . . ,5. For
n = 5 we only tested all minimal DFAs with one non-initial final state. The
upper bound has always been reached, and it has also been reached by the DFAs
in Figure 11 forn = 2, . . . ,8 – thus they are good candidates for the worst-case
in general.

5 Decision Problems

In this section, we consider decision problems involving unireg expressions,
namely the membership and the non-emptiness problems. We start with the
membership problem.

24 Rampersad, Ravikumar, Santean & Shallit

Fig. 7. Histogram for unique star over 2-state minimal DFA.

Theorem 4. The membership problem for unireg expressions is in P.

We provide two polynomial algorithms for this problem, one based on
the Glushkov automaton for a regular expression, and the other based on the
expression-tree for a regular expression and using a dynamic programming
technique.

Algorithm 1

Let R be a unireg expression overΣ , and w be a string inΣ ∗. We first
tackle the special case whenw = ε . In this case, we can determine efficiently
the membership, by consulting the parse-tree forR. If w 6= ε , we proceed as
follows. Letw = a1a2...ak and letR′ be the regular expression obtained fromR
by replacing the unique operations with the corresponding regular operations.
We use the algorithm of Glushkov to obtain anε-free NFA M such that the
set of strings accepted byM is the same as the set of strings generated byR′

(with the possible exception ofε). It is known [13] that Glushkov’s algorithm
preserves the degree of ambiguity of representation, that is, the number of
accepting computations inM for an input wordw equals the number of ways in
which R′ generatesw. Then,L(R) consists of those words which are accepted
by M in an unique computation or, we say, unambiguously. Thus, itnow
suffices to detect whether our wordw is accepted unambiguously byM. We
consider that the states inM are numbered from 0 tom−1, and we define a set
{Ta}a∈Σ of square matrices, by settingTa[i, j] to be the number of transitions

A Study on Unique Rational Operations 25

Fig. 8. Histogram for unique star over 3-state minimal DFA.

in M from i to j and labelled witha. Thus,Ta’s are m×m matrices. LetS
= [s(0),s(1), ...,s(m− 1)] where s(i) = 1 if i is the start state, 0 otherwise.
Similarly, let F = [f (0), f (1), ..., f (m−1)] where f (j) = 1 if j is an accepting
state ofM, 0 otherwise. Then, it is easy to check thatSTa1Ta2...TakF is the
number of accepting paths for the stringw in M. By computing the above
matrix chain product, we can determine the number of accepting paths forw.
If this number is 1, thenw is accepted; otherwise it is rejected. It is clear that
this algorithm runs in time polynomial in|R|+|w|, where by|R| we denote the
number of symbols inR.

Algorithm 2

Another algorithm for deciding membership for an unireg expression is a
slight modification of the well-known dynamic programming algorithm on
the expression tree of a regular expression. This algorithmwill first construct
the expression tree of our unireg expression. Suppose the input word isw of
length n. We index the positions of symbols inw from 1 to n. To each node
X of the expression tree, we associate ann× n matrix MX with values in
{0,1,2}. The cell MX[i, j] will store information about the subwordwi, j of
w starting at positioni and ending at positionj: a value of 0 represents no
match ofwi, j with the nodeX, a value of 1 represents exactly one match and
a value of 2 represents two or more matches. The matrices are computed in a

26 Rampersad, Ravikumar, Santean & Shallit

Fig. 9. Histogram for unique star over 4-state minimal DFA.

dynamic-programming style, similar to the classical algorithm. The algorithm
answersYES if MR[1,n] = 1, whereR is the root of the tree, andNO otherwise.

Theorem 5. The non-emptiness problem for unireg expressions is in PSPACE.

Proof. Let R be a unireg expression overΣ and R′ be the regular expression
obtained fromR by replacing the unique operations with the standard regular
operations. LetM be the NFA obtained by applying Glushkov’s algorithm toR′.
ThenL(R) is non-empty if and only if there exists a wordw accepted unam-
biguously byM. We give a polynomial space algorithm to test for the existence
of such aw. By Savitch’s theorem [24], it suffices to give a non-deterministic
algorithm.

For a ∈ Σ , let Ba denote the adjacency matrix ofM with respect to the
input a. By the state complexity result of Lemma 4, if there is a wordw ac-
cepted unambiguously byM, there is such aw of length at most 3n, wheren
is the number of states ofM. We thus non-deterministically guess such a word
w = w1w2 . . .wr , r ≤ 3n, symbol by symbol, and we compute the matrix prod-
uct Bw1Bw2 . . .Bwr = B, reusing space after each matrix multiplication. Here the
matrix multiplication is again done with⊕ and⊗ as the component-wise opera-
tions. We maintain anO(n) bit counter to keep track of the length of the guessed
string w. We verify thatM acceptsw unambiguously by looking at the row of
B corresponding to the start state ofM and summing the entries in the columns
corresponding to the final states ofM. This quantity is exactly 1 if and only if
M acceptsw unambiguously.

A Study on Unique Rational Operations 27

Fig. 10.Histogram for unique star over 5-state minimal DFA withk = 1.

The transformation ofR to R′ to M can be done in polynomial space, and
the non-deterministic algorithm described above uses onlypolynomial space. It
follows that the non-emptiness problem can be solved in polynomial space. ⊓⊔

6 Application: 2-DFA with a Pebble

Informally, a pebble 2-DFA is a 2-DFA that has a marker in the finite control.
At any step, depending on the current state and the input symbol scanned, the
pebble can be placed on a tape square. Also, the next move of the automaton is a
function of the presence of pebble on the current square scanned, in addition to
the current state and the current symbol read on the tape. Also, if the pebble is
in the current square, based on the current state and the current symbol scanned,
the finite control has the option to take back the pebble that can then be placed on
another square, etc. The acceptance policy is like in a 2-DFA: when it reaches a
configuration for which there is no next move, if the state reached is an accepting
(rejecting) state, the input is said to be accepted (rejected).

It is well-known that ifM is a 2-DFA with a pebble,L(M) is regular. Here we
consider the following question:What is the worst-case blow-up in the number
of states when a 2-DFA with a pebble is converted into a 1-DFA?Let f (n)
denote this function. Formally,f is defined by the following two conditions:
(1) there is ann-state 2-DFA with a pebble such that the minimum equivalent
1-DFA hasf (n) states, and (2) for anyn-state 2-DFA with a pebble, there is an
equivalent 1-DFA with at mostf (n) states. We show that a good lower-bound
on f (n) can be obtained from the results of the previous section. Theconnection

28 Rampersad, Ravikumar, Santean & Shallit

n-1

n-1n−2

n−2

b

b a

a

b
0

a

a

a

b

bb

a
. . .2

a
1

a

b
0

a,b
1 . . .

aa,b

Fig. 11.Worst-case candidates for unique star.

between the state complexity for converting 2-DFA with a pebble to a 1-DFA
and the state complexity of unique concatenation is provided by the following
lemma.

Proposition 7. Let A and B be two DFA’s with m and n states, respectively.
There exists a 2-DFA C with a pebble such that L(C) = L(A) ◦L(B) and C has
2(m+n)+2 states.

Proof. We will informally describe the operation ofC. The state set ofC is
given byQC = QA∪QB∪Q′

A∪Q′
B, whereQ′

A = {q′ | q∈ QA} andQ′
B = {q′ | q∈

QB}∪{r, r ′}. On an input string $w#, C starts with the reading head on the left
end-marker, in its start statesC — which is, by definition,sA. The head moves
to the right, andC simulatesA until an accepting state is reached. At this point,
C places a pebble on the current tape square, enterssB and moves to the right
simulatingB, until the right end-marker is reached. If at this point an accepting
state ofB is not reached, thenC proceeds as in Step 1, else it proceeds as in Step
2, detailed as follows:

1. Step 1:C enters the stater and makes a right-to-left sweep until it reaches
the left end-marker, and enters the statesA. Then it simulatesA as usual,
with the difference that when it reaches the pebble, it picksit up and
continues the computation to the right till another final state ofA is reached.
Then it drops the pebble and continues with the simulation ofB, as in the
initial phase.

2. Step 2:C enters the stater ′ and makes a right-to-left sweep until it reaches
the left end-marker and enters states′A. While in a state of the formq′a ∈ Q′

A,

A Study on Unique Rational Operations 29

C simulatesA, but uses the primed states and keeps moving to the right.
More precisely, ifδA(qa,b) = qd, thenC, on inputb and in stateq′a, changes
its current state toq′d and moves to the right. It continues this phase until the
square with a pebble is detected. At this point, it picks up the pebble, moves
to the right continuing the simulation ofA using the primed states. At this
point there are two cases to consider. (a) As the simulation of A continues,
the right end-marker is reached without ever reaching an accepting state of
A. In this case,C accepts the input and it halts. (b) An accepting state ofA is
reached before the right end-marker is reached. When an accepting state of
A is reached for the first time, the pebble is dropped on the square that forms
the last symbol that causedA to reach the accepting state,C enters the state
s′B and it starts the simulation ofB using the primed states. The simulation
continues until the right end-marker is reached. At this point, if an accepting
state ofB is reached,C rejects the input and halts. If an accepting state is
not reached, thenC enters the stater ′ and repeats Step 2.

It is clear thatC acceptsL(A)◦L(B) and the proof is complete. ⊓⊔

7 Conclusion and Further Work

In this paper we studied unique rational operations and their state complexity.
We drew connections between the so-called unireg expressions and unambigu-
ous regular expressions, and we studied the closure of DCF, CF and linear CF
languages with respect to unique union and unique concatenation. We obtained
a sharp bound of the state complexity for unique union, comparable with that
of “plain” union. For unique concatenation we gave a state complexity upper
bound which we strongly believe to be sharp, for we provided generic (parame-
terized) examples that reached the upper bound in all our extensive experiments.
For the unique square (unique concatenation of a language with itself), we pro-
vided sharp upper bounds and a generic worst-case example, in the laborious
proof of Lemma 6. Both bounds are significantly higher than those for the plain
concatenation. For the nondeterministic state complexityof unique concatena-
tion we provided an exponential lower bound. In Theorem 3 we provided a cu-
rious upper bound for the unique star, that we believe, yet again, to be sharp, for
the generic DFAs in Figure 11 have been empirically proven tobe worst-case
scenarios for this unique operation. Finally, we studied the complexity of the
membership and non-emptiness problem for unireg expressions, and we drew a
connection between 2-DFA with a pebble and unique concatenation, which we
believe that may be extended to unique star as well.

Several problems remain to be dealt with in the future. In thefollowing we
give a list which is by no means exhaustive.

30 Rampersad, Ravikumar, Santean & Shallit

• In addition to Lemmas 1 and 3, we conjecture and leave for further work the
non-closure of CF languages to the unique star.

• In Lemma 4 we gave an upper bound for the state complexity of the lan-
guage of all words accepted unambiguously by an NFA. It remains to show
that this bound is sharp.

• It is worth investigating the generic conjecture at page 10,which states a
connection between the state complexities of unique and poly operations.

• Theorem 2 provides an upper bound for the state complexity ofthe unique
concatenation. It remains to prove that the bound is sharp. We have given
generic examples which reached the upper bound in all our experiments and
it remains to show that indeed they are a general worst-case.

• At page 19 we gave candidates for worst-case scenarios for unique concate-
nation and unique square. It remains to prove theoreticallythat they reach
the given upper bound (we have already done it forL(Ni)

◦2).
• The upper bound in Theorem 3 remains to be proven sharp, by proving that

the example in Figure 11 is a worst-case example for this operation. There
also remains to modify the proof for the case whereε ∈ L and obtain a
corresponding upper bound.

• The emptiness and equivalence problems for unireg expressions have not
been dealt with yet.

• We haven’t studied the operation of unique shuffle,
◦

, which remains for
further work.

• Last but not the least, we propose a study onbounded unique

operations. For example, thek-unique concatenation of two languages
would be denoted byL1 ◦k L2, andw ∈ L1 ◦k L2 iff w can be factorized in
no more thank different ways asw = uv with u ∈ L1 andv ∈ L2. We an-
ticipate that the state complexities of these operations will extend naturally
those stated in this paper (possibly, by replacing the constant 3 in the present
bounds withk – for this operation).

8 Acknowledgements

This study benefitted greatly from our extensive experiments, and it could have
not been possible without the use of Grail++, carefully developed and main-
tained by Derick Wood, Sheng Yu, and its project members for over 20 years.

References

1. Karttunen, L.: Applications of Finite-State Transducers in Natural Languages Processing.
In: Proc. CIAA 2000. Volume 2088 of LNCS. (2000) 34–46

A Study on Unique Rational Operations 31

2. Bochmann, G.V.: Submodule Construction and SupervisoryControl: a Generalization. In:
Proc. CIAA 2001. Volume 2494 of LNCS. (2001) 27–39

3. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts. McGraw-Hill (1998)
4. Yu, S., Zhuang, Q., Salomaa, K.: The State Complexities ofSome Basic Operations on

Regular Languages. Theoretical Computer Science125(1994) 315–328
5. Campeanu, C., Culik, K., Salomaa, K., Yu, S.: State Complexity of Basic Operations on

Finite Languages. In: Proc. WIA 1999. Volume 2214 of LNCS. (1999) 60–70
6. Campeanu, C., Salomaa, K., Yu, S.: Tight Lower Bound for the State Complexity of Shuffle

of Regular Langauges. Journal of Automata, Languages and Combinatorics7 (2002) 303–
310

7. Salomaa, A., Wood, D., Yu, S.: On the State Complexity of Reversals of Regular Languages.
Theoretical Computer Science320(2004) 293–313

8. Y, G., Salomaa, K., Yu, S.: State Complexity of Catenationand Reversal Combined with
Star. In: Proc. DCFS 2006. Volume 2494. (2006) 153–164

9. Salomaa, A.S.K., Yu, S.: State Complexity of Combined Operations. Theoretical Computer
Science383(2007) 140–152

10. Yu, S.: State Complexity: Recent Results and Open Problems. Fundamenta Informaticae64
(2005) 471–480

11. Yu, S.: Regular Languages.In [25], Ch.1 (1997) 41–110
12. Brüggemann-Klein, A.: Regular Expressions into FiniteAutomata. Theoretical Computer

Science120(2) (1993) 197–213
13. Book, R., Even, S., Greibach, S., Ott, G.: Ambiguity in Graphs and Expressions. IEEE

Transactions on ComputersC-20(2) (1971) 149–153
14. Mandel, A., Simon, I.: On Finite Semigroups of Matrices.Theoret. Comput. Sci.5 (1977)

101–111
15. Ravikumar, B., Ibarra, O.: Relating the Type of Ambiguity of Finite Automata to the Suc-

cinctness of their Representation. SIAM J. Comput.18 (1989) 1263–1282
16. Holzer, M., Kutrib, M.: State Complexity of Basic Operations of Nondeterministic Finite

Automata. In: Proc. CIAA 2002. Volume 2608 of LNCS. (2003) 148–157
17. Hromkovĭc, J., Karhumäki, J., Klauck, H., Schnitger, G.: Communication Complexity

Method for Measuring Nondeterminism in Finite Automata. Inform. Comput.172 (2002)
202–217

18. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular Expressions: New Results and Open
Problems. J. Autom. Lang. Comb.9 (2004) 233–256

19. Birget, J.C.: Intersection and Union of Regular Languages and State Complexity. Inform.
Process. Lett.43 (1992) 185–190

20. Maslov, A.N.: Estimates of the Number of States of FiniteAutomata (Russian). Dokl. Akad.
Nauk SSSR194 (1970) 1266–1268 English translation inSoviet Math. Dokl.11 (1970),
1373–1375.

21. Salomaa, K., Zhuang, Q., Yu, S.: The State Complexities of some Basic Operations on
Regular Languages. Theoretical Computer Science125(1994) 315–328

22. Jirásková, G.: State Complexity of Some Operations on Binary Regular Languages. Theo-
retical Computer Science330(2) (2005) 287–298

23. Rampersad, N.: The State Complexity ofL2 and Lk. Information Processing Letters98
(2006) 231–234

24. Savitch, W.: Relationship between Nondeterministic and Deterministic Tape Complexities.
J. Comput. Syst. Sci.4 (1970) 177–192

25. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer-Verlag, Berlin
Heidelberg New York (1997)

