A Study on Unique Rational Operations

N. Rampersad, B. Ravikumar, N. Santeand J. Shallit

Abstract. For each basic language operation we define its “unique”teopart
as being the operation which results in a language whosesagad be obtain
uniquely through the given operation. As shown in the priglaries of this pa-
per, these unique operations can arguably be viewed as nethbiasic oper-
ations, placing this work in the popular area of state corigleof combined
language operations. Considering unique rational omerstiwe are questioning
about their state complexity. For an answer, we provide uppands and em-
pirical results meant to cast light into this matter. Equathportant, we hope to
have provided a generic methodology for estimating theitestomplexity. Yet,
the core value of this work may lay more in its initiative amgbeoach rather than
any particular result.
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1 Introduction

Finite automata (FA) are ubiquitous objects in computesrsmé theory as much
as in computer applications. They model finite state systénms a door lock
to the entire Universe — in some views — and check the syntaggnflar lan-
guages. Computers are deterministic finite automata (D&AJ, the English
lexicon can be spell-checked by a FA. Recently, automata feand new prac-
tical applications, such as in natural language proceg&ihgommunications
[2] and software engineering [3] — applications increalsimigmanding in terms
of computing resources. In this context, the study of statepiexity of opera-
tions on FA and their languages has become a topic of paranmportance.

From the Formal Languages point of view, FA are yet anotharftor defin-
ing the family of regular (or rational, as known in certainf@lisms) languages,
along with regular expressions and right linear grammalgyTarise from the
perpetual mathematical effort of expressing infinite otgday finite means. In
this paper we pursue a new direction in their study, namledysticcinctness of
expressing a language obtained by certaifique language operations, in terms
of the descriptional complexity of the languages involved.

Similar directions have been taken before in Automata Theay., for
basic language operations [4—7] and combined operations [8—i0kqular
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languages. In the present paper, we make a leap from thenttreads, by ad-
dressing the succinctness of some special operations;ly)ameeaddress those
operations derived from the basic ones, that reach a resalh iunigue man-
ner: an object obtained in two (or more) ways by applying tivergoperation
is excluded from the result. These unique operations carxpessed, as we
show in the beginning of Section 3, as combined basic opas{including in-
tersection, shuffle and homomorphism); neverthelessethomplex formulas
help very little in the estimation of their state complexltythe same section we
define the so-called unireg expressions (based on uniquatmpes) and make
the connection with unambiguous regular expressions. \Meegthat unireg ex-
pressions express the family of regular languages exddtgn, we study the
closure properties of some other families of languages nutheése unigue op-
erations. In Section 4 we give an upper bound on the state leaitypof the
language of those words accepted unambiguously by anasbidFA. This
construction turned out to be generic enough to provide axameapproach for
the estimation of state complexity of all unique operationg then consider
the state complexity of unique union, unique concatenaiwhunique star, and
establish upper bounds. Although we are not able to showstme bounds are
tight, there is strong empirical evidence for this fact,oeoéd in several experi-
ments where these upper bounds are consistently reach@elction 5 we study
the complexity of some decision problems related to unisggessions, namely
the membership and non-emptiness problems. Finally, itic®e6 we made a
practical connection between unique concatenation an&&lith a pebble.
On a last note, this work is in progress, and there remainsat geal to be
carried out. Several directions of further research cambed in the last section
of the paper. We feel that much more needs to be done, anduit isedief that,
beside the technical aspect of this study, we succeededctosapme new doors
in the area of the state complexity of combined operationggular languages.

2 Definitions and Notations

Let > be an alphabet, i.e., a nonempty, finite set of symbols (Btt@8y >*
we denote the set of all finite words (strings of symbols) a¥emand bye,
the empty word (a word having zero symbols). The operatiotootatenation
(juxtaposition) of two wordsl andv is denoted by - v, or simplyuv. Forw € >*,
we denote by the word obtain by reversing the order of symbolsvin

A nondeterministic finite automaton ov&i, NFA for short, is a tupleM =
(Q,2,8,00,F) whereQis afinite set of states): Q x (XU {e}) — 29 is a next-
state functiong is an initial state an& C Qs a set of final state®.is extended
overQ x 2* in the usual wayM is deterministic (DFA) ifd : Q x ~ — Q. We
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considercomplete DFA', that is, those whose transition function is a total
function.

The size ofM, siz€M), is the total number of its states. When we want to
emphasize the number of statesMf we say thatM is ann-state NFA, and
similarly for transitions. The language bf, denoted by.(M), belongs to the
family of regular languages and consists of those words acceptedvbyn
the usual sense.

A state ofM is accessible if there exists a path in the associated transition
graph, starting frongy and ending in that state. By convention, there exists a
path from each state to itself labeled wihA state iscoaccessible if there
exists a path from that state to some final state. A state wicbth accessible
and coaccessible is callagseful, and an automaton which has only useful
states is calledrim.

For a background on finite automata and regular languagesige the
reader to [11].

Definition 1. Let L, R be languages over. By unique concatenation of L
and R, denoted asdR, we understand the set

LoR={w|w=uv, uel, veR and this factorization is uniqye.

Definition 2. Let L be a language over. By unique star Of L, denoted as
L°, we understand the set

L°={eju{w|w=us...up, neN, uyelL\{e} ViI<i<n;
and this factorization is unigye

Notice that we could have definéd such that the factorization in the above
definition involvese as well. However, in this case, lif containede, thenL®
would be empty. Moreover, the connection with unambigu@ggilar expres-
sions (Lemma 2) could not be made. For these reasons we duojptbbve
definition.

Notation wise, we denotec R= LR\ (LoR) andL® = L*\ L°, and we refer
to these operations @8ly concatenation andpoly star. Note thats ¢ L°.
We also considetinique square andpoly square, given byL°?> =LoL and
L<>2 — L2 \ LOZ.

Definition 3. Let L, R be languages oveX. By wunique union Of L and R,
denoted as 13 R, we understand the set

LOR= (L\R)U(R\L) ,

in other words, the symmetric difference of L and R.
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Definition 4. By a unique regular expression, amireg ezpression for
short, we understand the well-formed, parenthesized flawith the follow-
ing operators: all symbols & > and ¢ are nullary, ° is unary, ando, ¢ are

binary. The operator is the counterpart ofJin expressions.

Since{a} o {b} = aob = ab, for any symbolsa,b € >, we denote the unique
concatenation of symbols by juxtaposition, as for the usoaktatenation. By
convention, the empty unireg expression, enclosed or npaientheses, de-
notes the empty set (& = () then £ (e) = 0). The language?(e), denoted

by unireg expression, is defined recursively as in the case of regular expres-
sions. However, for reasons which will become apparent, bt consider only
fully-parenthesized expressions

3 Properties

3.1 Regular Languages

In the following, we denote by, the shuffle operation on words or languages.
We also use two new symbols,2l¢ >, and we denote by, the homo-
morphism which deletes these symbols in wordgsi : (X U {1,2})* — Z*,
hio(a) = a, VYa e %, andhip(1) = h12(2) = &.

Lemma 1. If L and R are regular languages ther R, L°, and LOR are regular
languages.

Proof. It is clear thatL UR is regular. For the other two, it suffices to observe
that the languages

LoR= h12<(L1R|_u 2)N (L2Rw 1) N (z*(12+2+zz+1)z*)> and
L = hya( (L' 027) N ((L2)'w 1) N (87 (1524257 1)A7) )

wherel’ = L\ {¢} andA = XU {1,2}, are both regular, their definition involv-
ing operations under which regular languages are closeeh,T$inceLo R =
LR\ (L¢R) andL® = {e} UL*\ L, the conclusion follows. O

LetRbe aregular expression ovEf containingr occurrences of symbols in
> (multiple occurrences are counted separately). Dehbte{a,...,a } to be
an alphabet of new symbols, and considég : 2* — >* the homomorphism
which mapsa; to the symbol in% representing théth occurrence of a symbol
in R. By Ry we denote the regular expression obtain fi@rhy replacing each
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i'th occurrence of a symbol i& with the corresponding; € Z'. For example, if
R= (a+ab)*b*, thenR, = (a1 + apaz)*aj, andhg(ay) = hr(a2) = a, hr(ag) =
hR(a4) =h.

Definition 5. With the above notations, a regular expression Rrigmb < guous
if and only if the restriction of Rto .2 (Ry) is injective.(This definition is equiv-
alent to that given in [13].)

According to this definition, the above expressiRa= (a+ ab)*b* is not un-
ambiguous, sincejas, azas € L(R,) andhg(aiay) = hr(azag) = ab. An unam-
biguous regular expression “matches” any word in at mostvame

Notice that unambiguity does not ensure unique word pargiogexample,
the regular expressidR= (a* + b)* is unambiguous; however, the waad can
be parsed in two ways: by iterating the first Kleene star twacel by iterating
the second Kleene star twice - thaeshas two parsing trees. For ensuring unique
parsing, there exists another notion, thatsefongly unambiguous regular
expression, studied e.g. in [12], and which will not be cdased in this paper.

LetRbe a fully parenthesized regular expression @&vand denote bR the
unireg expression obtained froRby replacing its regular operations by their
unique counterparts. (We stress tRaghould be fully parenthesized.)

Lemma 2. If R is unambiguous the®’(R) = .Z(R).

Proof. The proof is by induction on the number of regular operatiorl. The
case wherR has no, or only one, operation can be easily verified. Supihage
the claim holds fon— 1 operationsn > 2, and thaR hasn operations. We have
the casesRR=R;-Ry, R=R; + Ry, or R=R;, whereRy, R, are subexpressions of
R consisting of at mogt— 1 operatlons We treat only the first caBer Ry - Ry,
and observe thaR = R; o R,. First notice that ifR is unambiguous then all
its subexpressions must necessarily be unambiguous asTweab,R; andR;
are unambiguous. This means, by induction hypothesis, #@,;) = .7 (R;)
and.Z(Ry) = Z(Ry). Then,Z(R) = Z(Ry-Ro) = Z(R1) - Z(Ro) = Z(Ry) -
Z(Ry). It now suffices to prove tha?’ (R;) - Z (Ry) = .Z(Ry) 0. Z(Ry), in other
words, that? (R; ) ¢.Z (Rz) = 0. Suppose there exist, U, € . (Ry) andvy, v, €
Z(Rp) such thauyvi = upv, = w. This leads to a contradiction as follows.
Let R, be the regular expression o\Ef, as defined previouslfr, splits into
Rﬁ and Rﬁ which are the subexpressions corresponding;tandR,. Then, if a
symbola; occurs inR&,, it cannot occur irRﬁ, and vice-versa. Sinog € .Z(R)
andR is unambiguous, there exists a uniguec £ (R;,) such thath(w') = w.
Similarly, there exist uniquely),u, € Z(Rt) andv,,v, € Z(R2) such that
h(up) = u, h(u,) = up, h(V}) = vi and h(v,) = v,. Sinceh is a homomor-
phism, clearlyu;v; = U5V, = w. Now, assume thal| < |up| =t and that
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W =aj, ...a. Then,a, is a symbol occurring iR} by the fact that, € .Z(R}).
At the same timeg, is a symbol occurring ifR2, by the fact that, € .Z(R?)
andv; has a proper prefix which is a suffix af. But we have already made
the observation thaR! and R2 cannot share common symbols, and this is a
contradiction.

In conclusion,.Z(Ry) ¢ Z(Rz) = 0, Z(R) = .Z(R), and the induction is
complete. O

Notice carefully that the converse of this lemma does nodl.himideed, if
R=a+ (a+a), thenR=a® (ada) and.Z(R) = Z(R) = {a}. HoweverRis
obviously ambiguous.

Corollary 1. Unireg expressions define the family of regular languages.

Proof. LetL be a regular language. Without loss of generality, we mayrass
thate ¢ L ( otherwise, we construct a unireg expresdiofor L \ {€} and then
consider the expressiam E for L).

Now, there exists an unambiguous regular expresBdar L — such an
expression can be obtained from a DFA foor by an algorithm as in [13].
Let R be the unireg expression obtained by replacing each operatR by the
corresponding unique operation. Then by Lemma 2 we HA@®) = £ (R) = L.

0

Remark 1.Unique concatenation is not associative. Indeed, consiaeiffol-
lowing examples:

1. For Ly = {b,b&?}, L, = {ada*} and Lz = {aba’b,ab}, we

have: (L; o Lp) o L3 = {ba'b,bafh,ba’b}, and Lj o (Lp o L3) =
{bab, ba®b, bah, ba’b}.

2. For Ly = {bba}, L, = {a’a*}, L3 = {aba’b,ab} we have:
(L1<> Lz) olg=0andLio (L2<>L3) = {baGb}.

3. Finally, the unique concatenation and unique star arelated: if L =
{a,b,b?} thenal? € (LoL)oL; howeverak? ¢ L°.

Notice that the reverse operation is compatible with theumioperations
and with their “poly” counterparts. Indeed, fbf,L, C >* we have:

(LioLp)R=LRoLl, (LiUL)R=LRULY (L)R=(LD)°,
(LioL)R=LRoLR (LinL)R=LRNLY, (LHR=(LR)".

Reviewing the notation, we have:
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- unique concatenatiob; o Lo, and poly concatenatiof; o Lo,

- unique stat°, and poly stat®,

- unique squaré®? = LoL, and poly squaré®® =L oL,

- unique uniorLlLOJLz, and poly uniorLlfJLz,

- for completeness, we also dencieique shuffle Liiily, and poly
shuffle L1l L.

Various connections among these operations can be drawexB&mple,

Lemma 3. If L is an arbitrary language then

(L"\{e})?=L°, and(L"\ {e})? = L°\ {e}.

Proof. (sketch) If w € L® then w # &, w = UjUp...Ui = V1Vo...Vj, with
Ug,...,U;,Vq,...,Vj € L, and there exist& such thatu; = vy, ..., U1 = V1
andug # Vk. Thenx=ug...uc € L*, y = Ugs1...U € L*, X = vp...w € L¥,
Y =V1...vj e L5, x#X, y#£Y, xy=xy e L*\ {€}. Thus,we (L*\ {&})o
(L*\ {€}). Conversely, ifv € (L*\ {£})°? thenw = xyz with x,xy,yz z< L* and
y # €. Clearlyw € L*, and it has two different factorizations into worddlin

If we L°\ {€}, suppose by contradiction that= xyzwith x,xy,yzz € L*\
{e}. Then denoter = x,v=yz U = xy,V =z, andu,u’, v,V € L*. Itis clear that
uv= UV € L*, thusw e L°. This contradicts the fact thate L°, for L°NL® = 0.
Conversely, ifw € (L*\ {€}) o (L*\ {€}) thenw # € and suppose by contradic-
tion thatw ¢ L°. Thenw = uilp... Ui = ViVo...Vj, with ug, ..., Ui, v1,...,vj € L,
and there exists & such thatu; = vi,...,U1 = W1 andux # V. If we de-
notex =Uy... U, Y = Uks1. ..U, X =Vi... Vi, andy = Vi;1...Vj, we have that
xy,X,y € L* thusxye L*, Xy € L*, and they denote two distinct factorizations
of winto words inL. Thusw € L° - a contradiction. a

3.2 Context-Free Languages

Proposition 1. The following families are not closed under unique union:HpC
CF, and linear CF.

Proof. It is clear that=* CJ L = L. However, it is well-known that the families
CF and linear CF are not closed under complement.

For the case of the family DCF, let = {a'bick:i # j} andL, = {a'bic*:
j # k}. ClearlyL; andL; are deterministic CFL's. Then

LiUL, = {@bick:i=j#£kori# j =k}
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We claim thatLlLOJ L, is not context-free. Suppose it is anditdbe the constant
of Ogden’s lemma. Let = a"b"c"™™ and mark thé’s. Letz= uvwxybe a de-

composition satisfying the conditions of Ogden’s lemma.h&ee the following

cases:

- v=aP andx = bY. If p= g, thenuv"/Pwx"/dy = gntn'prntentnt ¢ L;ULo.
If p+ g, then clearlyuw2wxy ¢ Ly UL,.

- v=bP andx = c%. Then clearlyuPw@y ¢ L ULo.

- vwx= bP. Then clearlyuPwxy ¢ Ly ULo.

Thus the decompositiom = uvxwyfails to satisfy the conditions of Ogden’s

lemma, a contradiction; we conclude tlh@ﬁ L, is not context-free, as required.
ad

Proposition 2. The following families are not closed under unique concaten
tion: DCF, CF and linear CF.

Proof. Consider the following CFLL; = {a" |n > 1} U{a"b" | n > 1} and
Lo={c"|n>1}u{b"c"|n>1}. Itis easy to see that

Lol ={a@"c™|mn>1}u{a"™™mc™ | mn> 1}U
u{aMc™ | m# n;mn> 1} u{a"p"c™ | m#£n;mn> 1},

that is, the only words i1 - L, which can be written as a concatenation in more
than one way ara"b"c", n > 1. We can prove thdt; oL, is not context-free by
Ogden’s lemma.

Assume by contradiction that it is, and IStbe the constant of Ogden’s
lemma. Take the word= aNbNcNN' € L; oL,. By Ogden’s lemma, if we mark
thea’s, there exists a factorizatian= uvwxysuch thawx has at least one marked
symbol,vwxhas at mosN marked symbols andvwxy € L oL, for all i > 0.
One can observe that such factorization must necessavigvha a' andx = b,

0 <t < N. But then, fori = 14 N!/t we haveuvwxy = aV+N'pN+N'N+N!
contradicting that such word must not belino L.

Sincel; andL, are both deterministic and linear CF languages, the conclu-

sion follows. a

Finally, we show the following claim about unique Kleenersta

Proposition 3. The following families are not closed under unique Kleeae st
CF and linear CF.



A Study on Unique Rational Operations 9

Proof. Let L1 and L, be as in the previous proposition. Clearly, UL, is
context-free. We can show thgt1 U L) is not context-free. In fact, it is easy
to see that

(LiULp)°na*b*c’ = {a"c™ | mn>1}u{a"™Mc™ | mn>1}U
u{a@™™c™ | m#nmn>1}u{a’c™ | m#nmn>1}U
u{a™mp™ | mn>1}u{b"c™ ™| mn> 1}

It can be shown as before that this is not a CFL language. Fhisn it
follows that CFL is not closed under unique star. Sihge/ L, is a linear CFL,
it follows that linear CFL is not closed under unique star. O

4 State Complexity

Before dealing with the state complexity of unique operatjave first prove the
following result. The idea behind the construction givethia proof will be use-
ful in proving upper bounds for the state complexities ofquiei concatenation
and unique star.

Lemma 4. Let A be an NFA with n@-transitions, of size m, and let L be the
language of those words iB* which are accepted unambiguously by A. Then L
is regular and its state complexity is at m&8t— 2™M+ 1.

Proof. We construct a DFA whose states are vectors witomponents, show-
ing the number of paths from the initial state to each statd: @& 2 (standing
for “two or more paths”). The final states are those vectorglwvtienote exactly
one path to one final state of the initial NFA.

Formally, let A = (Qa,Z,0a,0a,Fa). We construct a DFAB =
(QB,Z, 8, 0s, Fs) for L of size 3"—2M+ 1 as follows:

1. Qg = Vs — Vg U{s}, whereVg is the set of vectors witim elements, each
element taking values if0, 1,2}, andVj is the subset 0¥ consisting of
those vectors that do not have the value 1 in any componesaril|Qg| =
3M—2M4 1. States has the role of a sink state.

2. gs = (1,0,...,0), Fg is the set of all vectors such that the sum of all com-
ponents of/ corresponding to the final statesAfs precisely 1.

3. For allae X, we denote by, the incidence matrix oA with respect to the
symbola. Then, for allv € Vg —Vj,

VM, if VM, ¢ V4
s if VM, € Vg,

d&k(v,a) = {
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anddg(s,a) = s. Here the matrix multiplication is done as usual, but with
and® as component-wise addition and multiplication, descrifietbllows:
fora,b e {0,1,2}, we definea® b= min(a+b,2) anda® b= min(a- b, 2).
(See [14] for an early use of these operations.)

O

Notice that the construction can be modified to recognizeldnguage
of those words which are accepted ambiguously by the NFA:meke the
appropriate states final. Since this symmetry holds for nooststructions
proposed throughout the paper, we make, a priori, the faligwonjecture:

Conjecture.The state complexity results on unique operations (whidhhei
described in the sequel) hold for “poly” operations as well.

While we cannot currently show that the bound given in Lemnstight,
we can give an exponential lower bound, as follows.kEpI0, define a language

Lk = (0+1)*0(0+1)1(0+1)*.

The languageky (or variations thereof) have been used by several authbss [1
18] to prove lower bounds for non-deterministic state camnity. The language
Lk consists of all words containingt least one occurrencef a word in Q0+
1)1

Now consider the language

ULk = (081)°00(0® 1)*10 (0 1)°

obtained from the regular expression Ekqrby replacing the ordinary operations
with the unique ones. The languadéy consists of all words containirgxactly
one occurrencef a word in Q0+ 1)¥1.

Lemma 5. Any NFA accepting ULhas at leasg states.

Proof. For every wordx € {0,1}¥, define a pair(Ox, 1x). Note that &1x is in
ULy, since there is exactly one instance where a 0 is followed bl positions
later. However, for any 2 distinct wordsandy, at least one of the wordsQy
or Oylx must contairtwo occurrences of a subword iff@+ 1)¥1 (sincex andy
must mismatch in at least one place). Thus, at least onglgfdy Oylx is notin
L. Since there are*Pairs, it follows from a result of Birget [19] that any NFA
for ULy has at least'ostates. O

We easily deduce the following results.
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Proposition 4. There exists an NFA pMwith O(k) states such that any DFA,
NFA, or regular expression for the set of words accepted umgnously by M
has size at leagtk.

Proof. The languagé is accepted by an NFA with O(k) states. The set of
words accepted unambiguously B is exactlyULk. The result now follows
from Lemma 5. O

Proposition 5. There exists a regular language generated by a unireg expres
sion of size @k) such that any equivalent DFA, NFA, or regular expression has
size at leasgX.

Proof. The languag&JLy has the desired properties. O

4.1 Unique Union

For the unique union, we observe that given two D&kAndB, of sizem and

n respectively, we can easily construct a DFA of sma for L(A)LOJL(B) by
performing the cross-product éfandB and by setting as final states those state
pairs which have exactly one component final. We prove thatupper bound

of mnis tight.

Theorem 1. For m,n > 3, let L; and L, be accepted by DFA's with m and n
states respectively. The state complexitylcﬁJ Lo is mn.

Proof. Form,n > 3, we use the languages
A={we {0,1}" : |w|o = m—1 modm}

and
B={we {0,1}": |w|; =n—1 modn},

which were used by Maslov [20] to prove a similar result fa tindinary union.
Clearly, Ais accepted by am-state DFA B is accepted by an-state DFA, and

C=AUBis accepted by amn-state DFA. We show thaihnstates are necessary.

For integers,i’ andj,j’, 0<i,i’ <m—1and 0< j,j’ <n-1, letx=0'1]
andy = 0"1/" be distinct words. To complete the proof it is enough to sHuat t
x andy are inequivalent with respect to the Myhill-Nerode equevak relation.
We have several cases.

Case 1i,i' <m—1andj,j’ <n—1. If i #i, thenx0™ 1 ¢ C and
y0™ 11 ¢ C, sox andy are inequivalent. Ifj # j’, thenx1"1~} ¢ C and
y1"-1-1 ¢ C, sox andy are again inequivalent.
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Case 2i,i' =m—1, andj, ]’ <n—1. Thenx1" " ¢ C andy1" i € C,
sox andy are inequivalent.

Case 3i,i’ < m—1andj,j’ =n—1. Thenx0™ 1 ¢ C andy0™ 1~ e C,
sox andy are inequivalent.
Casedi<m-1,j<n-1,"=m-1, andj’ <n—1. Thenx ¢ C and

y € C, sox andy are inequivalent.

Case 5i<m—1,j<n-1,i"<m-1,andj’ =n-1. Thenx ¢ C and
y € C, sox andy are inequivalent.

Case6i<m—1,j=n-1,i"=m-1,andj’ <n—1.Ifi <m—2, then
xX0eCandy0¢C. If | <n—2,thenxl¢C andyleC. If i=m-2 and
i’ =n—2,thenx00 € C andy00 ¢ C. Thusx andy are inequivalent.

Case 7i =m-—1, andj = n— 1. If eitheri’ =m—1 or j) = n— 2, then
x ¢ C andy € C, sox andy are inequivalent. Otherwise, apply the argument of
one of the preceding cases, as appropriatg) @ndy0 to show thak andy are
inequivalent.

Thus allmndistinct pairsx,y are inequivalent. It follows that any DFA ac-
ceptingC has at leasinnstates. This completes the proof. a

We now approach the more difficult problem of determiningdtste com-
plexities of unique concatenation and unique star.

4.2 Unigue Concatenation

We start with a naive approach, aiming at implementing tHg poncatenation
first, and then derive the unique operation.

Let A=(Qa,Z,0a,%,Fa) andB = (Qg, 2, ds, Ss, Fg) acceptL; andLy, re-
spectively. Define an NFM = (Qc, Z, &, <, Fc) as follows:

Qc =QaU(QaxQ)U(QB x QB), Sc =sa and
FC FBXFBIfSBQFB

Fc = Fg x FgUFa X Fg, else.

&c is defined as followsa € %) :

oc(g,a) ={da(g,a)} if qisin Qa— Fa,

&(9,a) ={da(a.a), [Oa(a.a),0(ss,a)]} if qisinFa,

&([a,r],a) = {[oa(9,a),ds(r, )]} if [q,r] isin (Qa—Fa) x Qg,
&([a,r],a) ={[oa(q,a), I (r,a)], [Os(ss, ), s(r, )]} if [0,r] € Fax Qg,
&([a,r],a) = {[%(q,a),ds(r,a)]} if [q, ]IS in Qg x Qp.

The following observations are straightforward:
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() Liolo = L(C) NLiLlo.
(i) The number of states i@ is m+ mn+r?.

The number of states i@ can be reduced tm+ n+ mn+ (3) by observing
that the ordered pairlp,q],[q, p| € Qs x Qg are indistinguishable and can be
merged. When converting this NFA into a DFA, note that eveitysgt contains
exactly one occurrence of a set frapa and hence the number of subsets gen-
erated is at mogn2mn+n(n+1)/2,

A tight upper-bound on the number of states in a DFA acceptiig was
obtained in [21], as being2" — k2", wherek is the number of final states in
A. From these, it follows that an upper-bound on the numbetadés in a DFA
accepting_(A) o L(B) is given bym2mnn(n+1)/2(pn _ kon-1),

However, we can do better than this, by constructing a DFAHerunique
concatenation directly, as shown in the proof of the follogviesult.

Theorem 2. The state complexity of unique concatenation for regular- la
guages is at most 8 — k3"1, where m and n are the sizes of the input DFAS,
and k is the number of final states of the first DFA.

Proof. (sketch) LetA = (Qa,Z,0a,0a,Fa) andB = (Qg, 2, ds,0s, Fg) be the
input DFASs, of sizemandn respectively. For proving the upper bound we con-
struct a DFAC = (Qc, 2, &, qc, Fc) for L(A) o L(B), of sizem3" — k3"~

1. Qc = Qa x Vs —Fax Vg, whereVg is the set of vectors with elements, each
element taking values if0, 1,2}, andVj is the subset 0¥ consisting of
those vectors which have 0 in their first component. Cle&@y| = m3" —
k31,

2. oc = (0a,(0,...,0)) if ga € Fa andgc = (aa,(1,0,...,0)) otherwise,Fc
is the set of those statds,v) such that the sum of all components \of
corresponding to the final states®fs precisely 1.

3. For allae X, we denote by, the incidence matrix 0B with respect to the
symbola. Thendc((q,V),a) = (da(q,a),V), wherevV = vM, if d(q,a) & Fa
andVv = vM, + (1,0...,0) otherwise. The matrix multiplication is done as
usual, but with® and ® as component-wise addition and multiplication,
operations described in the proof of Lemma 4.

The idea of this construction was to compute the “multipjitof ambiguous
computations of the NFA fot(A)L(B), as inspired by the proof of Lemma 4.
0
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Considering the DFA, in Figure 1, we have found that this DFA is a state com-
plexity worst-case for unique square, proving that the ufjoeind is reached
for this operation:

o,
~()

Fig. 1. Nn: a worst case for unique square.

Lemma 6. For n > 3, the state complexity of(Nn)02 is n3" — 3"1 thus this is
a sharp upper bound for unigque square (whes k).

Proof. We prove that the construction in the proof of Theorem 2 leada
minimal DFA, by proving its total reachability and non-migitity. Consider
that the states dfl, are numbered (and named) from Onte- 1, and recall that
the corresponding DFA (as constructed in Theorem 2) hassst#tthe form
(i,(X1,...%n)), wherex; € {0,1,2} and the component-wise operations of the
vector(Xy, ... X)) arex@dy = min(x+Yy, 2) andx®y = min(xy,2). The adjacency
matrices forl\,, are:

1000...0 0100...0
0010...0 0010...0
M, = 0001...0 ’ M, = 0001...0
0000...1 0000...1
1000...0 1000...0

The following facts about state transitions will be useéier:

(0, (Xa,. - X)) == (0,04 ® %, 0,%, -, X 1))
(i, (X1, %)) —= (i+1 modn, (Xg & Xn, 0, %o, ..., Xn_1)),Vi £0 ,

(s (Xasee %)) = (41 modn, (Xn,Xa, .-, X0-1)),Vj £Nn—2

b
(N=2,(X1,..., %)) — (N=1L (X ® L X1,...,Xn-1)) ,

n

b
<07 (Xl,...,Xn)> - <07(X17X2®17X3>"'7Xn)> 5
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n

b
(1, (X1,-- -, %)) — (L, (X1, %2, X3 D 1, X4,..., %))

n

<j7(xl>"'7xn)> b—> <j,(X1,X2,...,Xj+2@1,...,xn)>,\VIj # n—1 s

(N—2,(Xg,---, %)) o, (N—2,(X1,%2,..., % ® 1)) ,
MN—1,(%0, ..., %)) 2 (=1, (DL, X, .. X)) -

I. Reachability

We show that any staté, (xi,...,X%,))) of our DFA is reachable from the
initial state(0, (0,...,0)).The following computation proves it:

(0.(0,....0)) ™% (0,(0,%1,0...,0)) -
—2,(0,(0,0,x4,0,....0)) L% (0,(0,%0,%4,0,....0)) 2
L( (0,0, %n,%1,0, ... 0)) X5 (0, (0, %1, Xny X0, 0, ... 0)) —2

X
<07(0707X47---7Xn7xl)> —3> <07 (07)(37"'7)(|'17X17)> —
bl’])(z
5 (0,(x4,0,%8, .-, %n)) = (0, (X0, %2, - -, %n))

Thus, from the initial state we can reach an arbitrary statéxs,...,xn)). For
reaching(i, (X1, ...,%)), withi <n—1, we first reaci0, (Xi+1,...,Xn, X1... X))

and then we apply the word': (0, (Xi41,..., %, X1...%)) Y, (i, (X1,..-Xn))-
For reaching(n — 1, (Xi,...,%n)), with x; > O (recall thatx; can not be 0 in
this case), we first reacl®, (x,,x1 — 1,...,%,_1)), then we applyp"~2 reaching
(N—2,(Xz,...,%, % — 1)), and then we appli one more time.

II. Non-mergibility

We prove that no two distinct statés (xi,...,X,)) and(j, (y1,...,Yn)) are
mergible, by finding a word which maps one of these statesarfioal state
and maps the other into a non-final state. Incidentally, ¢obges apparent that
our DFA has no sink state.

(case 1: i# j) We choose the word™ 'b"a"2, and obtain the following
computations:

n—i—1

(i, (%, %)) == (N—=L,(1&X & ¥)_,5X),0,...0,%, ..., Xis1)) —
bn
i’ <07(1®X1@ZT:i+1Xj707"'707X2>'-'Xi)> -
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0,1 s 1%,1,0,...,0%,...x)) T
e n—2,(185"1%,0,...,0,1)) ,

thus we reach a final state. For the other state we have tlusvioi computa-
tion:

FI

(Js 1, yn)) 2 (J+n—| modn, (3 (-),0,...,0,y2,... %)) —

n n2

— (j+n—i modn,(3(-),0,...,1,...,ys,.. y.)> (%)

n—2

— (j+n—i modn,(3(-),0,...,1,...,0))

and a final state is not reached. In step marked 1 appears at position
j+n—i+2 modn, and on the second position we necessarily have 0, since
j # i (hence 24 j+n—i modn). By the end of the computation, the value 0
on the second position migrates to the end of the vector; ttieisomputation
fails. Recall thah > 3 thusn— 2 > 1 and the last step has at least one transition.

(case 2: i= j) Since the states are distinct, there exists a poskisuch that
Xk # Yk. Without loss of generality we may assume thak yix (otherwise we
flip the states). We distinguish the following subcases:

1. (=1 oryx = 1) Forx, = 1 we use the word" ¥ (recall thatx # yy), and
for yx = 1 we flip the states.

2. (x = 0,yx = 2) We distinguish two situations. K =i +2 we have the
following computations:

. pn-i-1 pn-1
<|7(X17"'Xn)> - <n_17(1:Xk@1,Xk+1,.-.,Xk_1)> B—

-1
— (N—2, (X415 -+ - Xny X155 1))

which ends in a final state, whereas the same word maps the stat
(i,(y1,...yn)) into a non-final state, foyx ® 1 = 2. Thus the word?"~'—2
solves this case. K +# i + 2 we have the following generic computation:

bn—k+2 an—2

(i,(X1,... %)) — < (xk 15Xy - Xy Xay e vy Xko2))) —

n—2

— (% (20 X)) —

((XkLO ,0)>
— (t,(%.0,20,...,0)) ,
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with somet € {0,...,n— 1} and z € {0,1,2}. From here, there ex-
ists a wordw = @ which continues the computation up t&,(1 =
X @ 1,0,...0,20,...,0)), and after that, the word"! leads to the
state (,(0,...0,2,0,...,0,1)). Thus, the word"*2a"2pawli'~* maps
(i, (x1,...,%)) to afinal state, however, this is not true for(ys,...,Yn))-

We have proven the non-mergibility as well, thus the DFA isimal, and its
size is exactly the upper bound for unique square. O

Remark 2.This combinatorial proof does not work far= 2. We were expect-
ing this, for we verified experimentally that the upper boimdot reached for
2-state DFAs.

We can also prove the following exponential lower bound foe hon-
deterministic state complexity of unique concatenation.

Proposition 6. There exists a pair of NFA’s Mand M, with O(k) states com-
bined, such that (M;)L(M,) is accepted by an (&) state NFA, but any NFA
accepting M) o L(M,) has at leasg states.

Proof. Take L(M;) = (0 + 1)*0(0 + 1)*1 and L(Mp) = (0 + 1)*. Then
L(M1)L(M,) is accepted by a®(k) state NFA, but any NFA acceptirgM;) o
L(M,) = ULy has at least*2states. O

Unigue Concatenation: Empirical Results

Experiment 1. (description) We generate all minimal DFA with 3 states
and perform unique concatenation on all pairs. There ar@ Higinct DFA,
leading to 1056784 operations. Figure 2 provides a histogrieour results: the
x-axis represents the size of the output DFA, and the y-dgis the number of
cases which resulted in DFAs of that size.

For two DFAs of sizam andn, the theoretical upper boundnig3” — k3"-1
(k is the number of final states in the first DFA). The largest DBR&ined in
this experiment are of size 72, and are the result of opestichere the first
DFA has precisely one final state. Thus the bound is reached fon = 3 and
k = 1. Notice that small DFAs have a higher incidence rate, minét the fact
thatthe worst-case scenarios are sparse

Quite interestingly, the upper bound is not reached rfoe= n = 2: we
gave a possible explanation for this in Remark 2. The histogof unique
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Fig. 2. Histogram for unique concatenation over 3-state minimaADF

concatenation in this case is shown in Figure 3. Notice thatperation reaches
15 states (14 is the largest value reached). Moreover, &utlique square in
this case, the largest reached size is 12.

Experiment 2. (description) Initially we investigated whether the urequ
square operation has a smaller state complexity. For thigesfermed this op-
eration for all minimal DFA of size 3 and 4. The results (higgams) are shown
in Figure 4 and Figure 5. We found 6 minimal DFA of size 3 (withedfinal
state) whose unique square reaches the upper bound of 72.

Experiment 3. (description) We also questioned whether the worst-case sc
narios for the standard concatenation are also worst fouriepue concatena-
tion. Thus, we took 16 pairs of DFA which have been proven B [ reach
the upper bound for concatenation (forn € {2,3,4,5}) and performed their
unique concatenation. In the following table, the numbesarentheses are the
upper bounds for unique concatenation, and the other nwarerthe results
obtained in our experiment.
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Fig. 3. Histogram for unique concatenation over 2-state minimaADF

m\n 2 3 4 5
2| 9(15) 29(45) 88(135) 267 (405)
3 |15(24) 61(72) 158(216) 565 (648)
4| 24(33) 69(99) 267 (297) 807 (891)
5 | 27 (42) 113(126) 283 (378) 1049 (1134)

We observe that none of these examples are reaching uppet$éar unique
concatenation, thus it is not necessary that the worsscseconcatenation
are worst for unique concatenation as well. We will see ldiat the reciprocal
may be true: worst-case examples for unique concatenatmnhba worst for
concatenation as well.

Candidates for a generic example. Consider the two parameterized
minimal DFA: J; and N;, with i > 3, as shown in Figure 6. Our experiments
show that the upper bound is reached for any of the followiogplminations:
L(3)°2, L(N)°2, L(J) o L(Jj), L(Ni) o L(N;j), L(J) o L(N;), with i, j arbitrary
integers greater than 2. It is interesting to notice thas given in [23] as ex-
ample for reaching the upper bound for the normal concatanaience it may
provide an example where worst-case is achieved for botbhatenation and
unique concatenation.
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Fig. 4. Histogram for unique square over 3-state minimal DFA.

4.3 Unique Star

As before, we start with a naive approach. lkebe a DFA for a regular lan-
guagelL, of sizem, andB be the NFA accepting.™, obtained by the standard
construction without employing (B hasm- 1 states). Recall that is a by-
product of unique star and that poly star cannot produce nt.N&A for L°
works as follows. We start by simulatirdy When we nondeterministically hit
a final state oB (i.e., we may not stop at the first hit), we start simulating@ tw
copies ofB in parallel (cross product), one continuing the initial qartation,
the other starting from the initial state. The input is a¢edpwvhen both sim-
ulations accept. This NFA ham+ 1 state in the first module anu® in the
second. Thus we have? + m+ 1 states NFA which implements the poly star
(it accepts all those words which have more than one faetoiz into words
in L). SinceL® = L*\ L°, we obtain a first upper bound for the unique star, of
omP+milom-1 4 om-k-1y ‘\wherek is the number of final states &fwhich are
not initial.

By using a technique similar to that for unique concatemati@ can sub-
stantially improve this upper bound:

Theorem 3. If L\ {€} is accepted by a DFA A of size m and with k final states,
then a DFA for I° has at mos8™ % 4 (k4 2)3™ k-1 (2m-1 4 om-k-1_ 2),

(this upper bound has been reached foeld and m= 2,...,8 by the generic
examples in Figure 11 — thus we conjecture that it is sharp
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Fig. 5. Histogram for unique square over 4-state minimal DFA.
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Fig. 6. Parameterized automataandN;.

Proof. Let A= (Qa = {1,2,...,m},>,da,1,Fa) be a DFA forL, of sizem,
andFa = {m—k+1,...,m}. By M, we denote the adjacency matrix Afwith
respect to the symbal € >. ThusM|i, j] is 1 if there is a transition fromto |
labeled witha, and O otherwise.

Denote, as beforep and® to be two operations given kgy® b = min(a+
b,2) anda® b= min(a-b,2). We define a DFB = (Qg, 2, d,0,Fg) for L° as
follows:

1. Qg =V U{0}, where 0 is the initial state d andV is the set of all vec-
tors withm components holding values {0, 1,2}. The vector entries are
indexed from 1 tom.

2. The transition function is defined as follows:
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(@) d(0,a) = va, wherevy[da(1,a)] =1, va[1] =1 if da(1,a) € Fa, and
Va[i] = O for all other indices.
(b) Denote&[v] to be the valuevm—k+ 1] & --- @ vim|. For all j €
{1,...,m} anda € X we setdg(v,a) =V +V’, wherevV = v M, and
V' = (%(V),0,0,...,0).
3. Fjg={veV|X(v)=1}u{0}.

We use vectors to store the number of computatiors, inom the initial state
to every state: 0, 1, or 2 ( 2 = more than one computation). léetorv is
reached during the computationBfthe valueS(v) gives the number of differ-
ent computations ik reaching final states. This number has been added to the
first component of, meaning that reaching a final stateAimplies reaching its
initial state as well, for we aim at accepting wordd.in If a wordw “reaches”

a state-vectow in B, then V[i] gives the number (0,1, or 2) of distinct paths in
A, labeled withw, from the initial state ofA to its statei, whenA is modified

to acceptL® in the standard way. By setting as final stataBiall those vectors
which denote exactly one successful such path, we fBraecept exactly the
words inL°.

It now remains to compute how many states can possibly béeeaaB.
First, B will have an initial state and, eventually, a sink state. Wakentwo
crucial observations: (a) for a reachable stateV we must have/[1] > S(v),
and (b) any reachable state V containing only values 0 and 2 is mergible into
(or, equivalent to) the sink state. Indeed, the first obgiEnvas justified by the
fact that a reachable stat@ccumulates in[1] the valueS(v), according tads.
For the second observation we notice that dontains only 0's and 2’s, then
os(v,a) will have the same property. Moreover, such state cannotiag fiVe
are now ready to compute the maximum number of reachablkesstztB can
have,after an eventual minimization

1. There is an initial state 0 and eventually a sink state,usting for 2 states
to begin with.

2. At most 3K — 1 vectorsv with S¢(v) = 0 can be reached. Indeed they are
3™k such vectors; however the null vector cannot be reachedn fnese
vectors, we subtract those having only 0's and 2’s, for thithewentually be
merged together within a sink state wHis minimized. There are®k—1
such vectors, without counting the null vector. Thus, weehaltogether
3m-k_ 2mkK statesn this case.

3. At most X-3™ k"1 statesv with S¢(v) = 1 can be reached. Observe that
once &(v) = 1 we can not have[l] = 0 sinceS(v) has been added to
v[1] during an eventual transition. Thugl| can take two values (1 and 2),
then the portion of the vector(2,...,m— k] gives 3*1 combinations,
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and there are at mo&tcombinations ofjm—k+1,...,m] which ensure
S(v)=1.

4. Finally, at most B-k-1(3 —k— 1) statesv with S(v) = 2 can be reached.
Indeed, we have at most 3 k— 1 combinations ivjm—k+1,...,m] which
ensureS (v) = 2. Thenv[1] must be 2 (sinc&(v) has been added to it), and
there are 3-%~1 combinations fonv[2...m— k]. However, some of these
vectors are surely mergible into the sink state: those wills 6's and 2's.
There are exactly®*~1(2¢— 1) such vectors, since:v[1] = 2, there are
(2¢— 1) combinations irvjm—k+1,...,m| (this portion cannot be all 0s),
and there are® *~1 combinations of 0's and 2's w2, ..., m—k]. Combin-
ing all these numbers, we obtaiff $~1(3¢ — k — 1) — 2mk-1(2k _ 1) states
in this case.

We reach the conclusion by adding up the figures underlindgeimbove cases
1-4. 0

The case whem € L and we are given a DFA fak is proven similarly,
and may lead to a slightly different upper bound. As a mattdact, we can
immediately derive an upper bound by noticing that a DFALfar{¢} has at
most one state more than the DFA fo(thus, we just replacean by m+ 1 in the
above result). Nevertheless, a proof as in Theorem 3 mayowepsuch upper
bound, and it merely involves a different state-indexingesne. We leave this
exercise to the reader.

Unigue Star: Empirical Results

Our experiments show that this upper bound is very likelyrgha bothn
andk. In Figures 7, 8, 9 and 10 one can find the histograms fer2,...,5. For
n =5 we only tested all minimal DFAs with one non-initial finabtt. The
upper bound has always been reached, and it has also bebaddncthe DFAs
in Figure 11 forn=2,...,8 —thus they are good candidates for the worst-case
in general.

5 Decision Problems

In this section, we consider decision problems involvingreg expressions,
namely the membership and the non-emptiness problems. akievath the
membership problem.
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Fig. 7. Histogram for unique star over 2-state minimal DFA.

Theorem 4. The membership problem for unireg expressions is in P.

We provide two polynomial algorithms for this problem, onased on
the Glushkov automaton for a regular expression, and ther dthsed on the
expression-tree for a regular expression and using a dynanoigramming
technique.

Algorithm 1

Let R be a unireg expression ovel, andw be a string inZ*. We first
tackle the special case wha&n= ¢. In this case, we can determine efficiently
the membership, by consulting the parse-treeRotf w # €, we proceed as
follows. Letw = a;a,...a¢ and letR' be the regular expression obtained frém
by replacing the unique operations with the correspondegmlar operations.
We use the algorithm of Glushkov to obtain affree NFA M such that the
set of strings accepted byl is the same as the set of strings generatedRby
(with the possible exception @&). It is known [13] that Glushkov’s algorithm
preserves the degree of ambiguity of representation, thathe number of
accepting computations M for an input wordw equals the number of ways in
which R generatesv. Then,L(R) consists of those words which are accepted
by M in an unique computation or, we say, unambiguously. Thusow
suffices to detect whether our wovdis accepted unambiguously . We
consider that the states v are numbered from O tm— 1, and we define a set
{Ta}acs of square matrices, by settiny[i, j| to be the number of transitions
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Fig. 8. Histogram for unique star over 3-state minimal DFA.

in M from i to j and labelled witha. Thus, T;’'s are m x m matrices. LetS

= [8(0),s(1),...,s(m—1)] wheres(i) = 1 if i is the start state, 0 otherwise.
Similarly, letF = [f(0), f(1),..., f(m—1)] wheref(j) = 1if j is an accepting
state ofM, O otherwise. Then, it is easy to check t1&iE, Ta,...Ta F is the
number of accepting paths for the strimgin M. By computing the above
matrix chain product, we can determine the number of aaugiaths forw.

If this number is 1, thenv is accepted; otherwise it is rejected. It is clear that
this algorithm runs in time polynomial ifR|+|w|, where by|R| we denote the
number of symbols if.

Algorithm 2

Another algorithm for deciding membership for an unireg resggion is a
slight modification of the well-known dynamic programmintgga&ithm on
the expression tree of a regular expression. This algonihihfirst construct
the expression tree of our unireg expression. Suppose phe word isw of
lengthn. We index the positions of symbols i from 1 ton. To each node

X of the expression tree, we associate rar n matrix My with values in
{0,1,2}. The cell Mx([i, j] will store information about the subwong; ; of

w starting at positiori and ending at positiorj: a value of 0 represents no
match ofw; ; with the nodeX, a value of 1 represents exactly one match and
a value of 2 represents two or more matches. The matricesoarputed in a
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Fig. 9. Histogram for unique star over 4-state minimal DFA.

dynamic-programming style, similar to the classical alfpon. The algorithm
answerdYEs if Mg[1,n] =1, whereR s the root of the tree, anib otherwise.

Theorem 5. The non-emptiness problem for unireg expressions is in EGPA

Proof. Let R be a unireg expression ovér and R be the regular expression
obtained fromR by replacing the unique operations with the standard regula
operations. LeM be the NFA obtained by applying Glushkov’s algorithnRo
ThenL(R) is non-empty if and only if there exists a wovdaccepted unam-
biguously byM. We give a polynomial space algorithm to test for the existen
of such aw. By Savitch’s theorem [24], it suffices to give a non-deteristic
algorithm.

For a € 2, let B, denote the adjacency matrix & with respect to the
input a. By the state complexity result of Lemma 4, if there is a wara@c-
cepted unambiguously by, there is such av of length at most 3 wheren
is the number of states ®. We thus non-deterministically guess such a word
W=wiW,...W, r < 3", symbol by symbol, and we compute the matrix prod-
uct By, Bw, ... Bw, = B, reusing space after each matrix multiplication. Here the
matrix multiplication is again done witlh and® as the component-wise opera-
tions. We maintain a®(n) bit counter to keep track of the length of the guessed
stringw. We verify thatM acceptsv unambiguously by looking at the row of
B corresponding to the start stateMfand summing the entries in the columns
corresponding to the final statesMf This quantity is exactly 1 if and only if
M acceptsv unambiguously.
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The transformation oR to R to M can be done in polynomial space, and
the non-deterministic algorithm described above uses pollynomial space. It
follows that the non-emptiness problem can be solved inmmtyjial space. O

6 Application: 2-DFA with a Pebble

Informally, a pebble 2-DFA is a 2-DFA that has a marker in timitdi control.
At any step, depending on the current state and the input glyscanned, the
pebble can be placed on a tape square. Also, the next move afitbmaton is a
function of the presence of pebble on the current squarenedam addition to
the current state and the current symbol read on the tape, iAhe pebble is
in the current square, based on the current state and trentsymbol scanned,
the finite control has the option to take back the pebble #ratlren be placed on
another square, etc. The acceptance policy is like in a 2:Dif&n it reaches a
configuration for which there is no next move, if the stateheal is an accepting
(rejecting) state, the input is said to be accepted (reggcte

It is well-known that ifM is a 2-DFA with a pebbld, (M) is regular. Here we
consider the following questioWVhat is the worst-case blow-up in the number
of states when a 2-DFA with a pebble is converted into a 1-DE&Rf(n)
denote this function. Formallyf is defined by the following two conditions:
(1) there is am-state 2-DFA with a pebble such that the minimum equivalent
1-DFA hasf (n) states, and (2) for any-state 2-DFA with a pebble, there is an
equivalent 1-DFA with at most(n) states. We show that a good lower-bound
on f(n) can be obtained from the results of the previous sectionc®haection
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Fig. 11. Worst-case candidates for unique star.

between the state complexity for converting 2-DFA with algelio a 1-DFA
and the state complexity of unique concatenation is pravigethe following
lemma.

Proposition 7. Let A and B be two DFA’'s with m and n states, respectively.
There exists a 2-DFA C with a pebble such th&f) = L (A) oL(B) and C has
2(m+n) + 2 states.

Proof. We will informally describe the operation &. The state set o€ is
given byQc = QaUQsUQ,UQg, whereQ, = {d | g€ Qa} andQg ={d' |q €
Qg}U{r,r'}. On an input string %#, C starts with the reading head on the left
end-marker, in its start statg — which is, by definitionsa. The head moves

to the right, andC simulatesA until an accepting state is reached. At this point,
C places a pebble on the current tape square, estesiad moves to the right
simulatingB, until the right end-marker is reached. If at this point aocegting
state ofB is not reached, the@ proceeds as in Step 1, else it proceeds as in Step
2, detailed as follows:

1. Step 1C enters the state and makes a right-to-left sweep until it reaches
the left end-marker, and enters the stgte Then it simulatesA as usual,
with the difference that when it reaches the pebble, it pitksp and
continues the computation to the right till another finatestaf A is reached.
Then it drops the pebble and continues with the simulatioB, s in the
initial phase.

2. Step 2C enters the staté and makes a right-to-left sweep until it reaches
the left end-marker and enters stateWhile in a state of the formy, € Q,,
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C simulatesA, but uses the primed states and keeps moving to the right.
More precisely, ifda(da,b) = qq, thenC, on inputb and in statey,, changes
its current state tgf; and moves to the right. It continues this phase until the
square with a pebble is detected. At this point, it picks @gébble, moves
to the right continuing the simulation &f using the primed states. At this
point there are two cases to consider. (a) As the simulaticgh apntinues,
the right end-marker is reached without ever reaching aagic state of
A. In this caseC accepts the input and it halts. (b) An accepting stai& isf
reached before the right end-marker is reached. When aptatwgstate of
Ais reached for the first time, the pebble is dropped on thereghat forms
the last symbol that causédto reach the accepting sta@enters the state
s and it starts the simulation & using the primed states. The simulation
continues until the right end-marker is reached. At thisipaf an accepting
state ofB is reached( rejects the input and halts. If an accepting state is
not reached, the@ enters the staté and repeats Step 2.

It is clear thailC acceptd(A) o L(B) and the proof is complete. ]

7 Conclusion and Further Work

In this paper we studied unique rational operations and #iaie complexity.
We drew connections between the so-called unireg expressiod unambigu-
ous regular expressions, and we studied the closure of DERN@ linear CF
languages with respect to unique union and unique condaiansVe obtained
a sharp bound of the state complexity for unique union, coaipa with that
of “plain” union. For unique concatenation we gave a stat@mexity upper
bound which we strongly believe to be sharp, for we providedegic (parame-
terized) examples that reached the upper bound in all oansixte experiments.
For the unique square (unique concatenation of a languatatsaelf), we pro-
vided sharp upper bounds and a generic worst-case examgles laborious
proof of Lemma 6. Both bounds are significantly higher thasséhfor the plain
concatenation. For the nondeterministic state complexitynique concatena-
tion we provided an exponential lower bound. In Theorem 3 mweided a cu-
rious upper bound for the unique star, that we believe, yana¢p be sharp, for
the generic DFAs in Figure 11 have been empirically provehetavorst-case
scenarios for this unique operation. Finally, we studiezl tbmplexity of the
membership and non-emptiness problem for unireg expressimd we drew a
connection between 2-DFA with a pebble and unique concatenavhich we
believe that may be extended to unique star as well.

Several problems remain to be dealt with in the future. Inftilewing we
give a list which is by no means exhaustive.
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In addition to Lemmas 1 and 3, we conjecture and leave fonéunivork the
non-closure of CF languages to the unique star.

In Lemma 4 we gave an upper bound for the state complexity eiah-
guage of all words accepted unambiguously by an NFA. It ratd show
that this bound is sharp.

It is worth investigating the generic conjecture at pagevilich states a
connection between the state complexities of unique andqu@rations.
Theorem 2 provides an upper bound for the state complexitieotinique
concatenation. It remains to prove that the bound is shagh#Ve given
generic examples which reached the upper bound in all owrgwrpnts and
it remains to show that indeed they are a general worst-case.

At page 19 we gave candidates for worst-case scenarios ifueiaoncate-
nation and unique square. It remains to prove theoreti¢chfy they reach
the given upper bound (we have already done iLfdy;)°?).

The upper bound in Theorem 3 remains to be proven sharp, jngrthat
the example in Figure 11 is a worst-case example for thisatioer. There
also remains to modify the proof for the case where L and obtain a
corresponding upper bound.

The emptiness and equivalence problems for unireg expressiave not
been dealt with yet.

We haven't studied the operation of unique shuffle,which remains for
further work.

Last but not the least, we propose a study bounded unique
operations. For example, th&-unique concatenation of two languages
would be denoted by; ok Lo, andw € L1 ok L iff w can be factorized in
no more thark different ways asv = uv with u € L1 andv € L,. We an-
ticipate that the state complexities of these operatiotisewtiend naturally
those stated in this paper (possibly, by replacing the eon&tin the present
bounds withk — for this operation).

Acknowledgements

This study benefitted greatly from our extensive experiseatd it could have
not been possible without the use of Grail++, carefully dgved and main-
tained by Derick Wood, Sheng Yu, and its project membersyer 80 years.

References

1.

Karttunen, L.: Applications of Finite-State Transdwcar Natural Languages Processing.
In: Proc. CIAA 2000. Volume 2088 of LNCS. (2000) 34-46



10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A Study on Unique Rational Operations 31

Bochmann, G.V.: Submodule Construction and Supervi€amytrol: a Generalization. In:
Proc. CIAA 2001. Volume 2494 of LNCS. (2001) 27-39

Harel, D., Politi, M.: Modeling Reactive Systems with t8tzharts. McGraw-Hill (1998)

Yu, S., Zhuang, Q., Salomaa, K.: The State ComplexitieSarhe Basic Operations on
Regular Languages. Theoretical Computer Scidrisy1994) 315-328

Campeanu, C., Culik, K., Salomaa, K., Yu, S.: State Corilpief Basic Operations on
Finite Languages. In: Proc. WIA 1999. Volume 2214 of LNC299) 60-70

Campeanu, C., Salomaa, K., Yu, S.: Tight Lower Bound ferState Complexity of Shuffle
of Regular Langauges. Journal of Automata, Languages antb{@atorics7 (2002) 303—
310

Salomaa, A., Wood, D., Yu, S.: On the State Complexity ofdReals of Regular Languages.
Theoretical Computer Scien820(2004) 293-313

Y, G., Salomaa, K., Yu, S.: State Complexity of Catenatiod Reversal Combined with
Star. In: Proc. DCFS 2006. Volume 2494. (2006) 153-164

Salomaa, A.S.K., Yu, S.: State Complexity of Combined@pens. Theoretical Computer
Science383(2007) 140-152

Yu, S.: State Complexity: Recent Results and Open Prabl&undamenta Informaticéé
(2005) 471-480

Yu, S.: Regular Languagek [25], Ch.1(1997) 41-110

Briiggemann-Klein, A.: Regular Expressions into Fiitéomata. Theoretical Computer
Sciencel2((2) (1993) 197-213

Book, R., Even, S., Greibach, S., Ott, G.. Ambiguity ira@hs and Expressions. |IEEE
Transactions on Compute@20(2) (1971) 149-153

Mandel, A., Simon, I.. On Finite Semigroups of Matric&heoret. Comput. Scb (1977)
101-111

Ravikumar, B., Ibarra, O.: Relating the Type of Ambiguwf Finite Automata to the Suc-
cinctness of their Representation. SIAM J. Comad8t(1989) 1263—-1282

Holzer, M., Kutrib, M.: State Complexity of Basic Opeoais of Nondeterministic Finite
Automata. In: Proc. CIAA 2002. Volume 2608 of LNCS. (200383457

Hromkove, J., Karhumaki, J., Klauck, H., Schnitger, G.: CommunaatComplexity
Method for Measuring Nondeterminism in Finite Automatafolm. Comput.172 (2002)
202-217

Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular fiErssions: New Results and Open
Problems. J. Autom. Lang. Com®(2004) 233-256

Birget, J.C.: Intersection and Union of Regular Langsagnd State Complexity. Inform.
Process. Let43(1992) 185-190

Maslov, A.N.: Estimates of the Number of States of FiAiitomata (Russian). Dokl. Akad.
Nauk SSSR194 (1970) 1266-1268 English translation 8oviet Math. Dokl11 (1970),
1373-1375.

Salomaa, K., Zhuang, Q., Yu, S.: The State Complexitfesome Basic Operations on
Regular Languages. Theoretical Computer Scidris(1994) 315-328

Jiraskova, G.: State Complexity of Some Operations oafgiRegular Languages. Theo-
retical Computer Sciencg@3((2) (2005) 287—298

Rampersad, N.: The State Complexityldfand LX. Information Processing Lette©8
(2006) 231-234

Savitch, W.: Relationship between Nondeterministid Beterministic Tape Complexities.
J. Comput. Syst. Sci (1970) 177-192

Rozenberg, G., Salomaa, A.: Handbook of Formal Languadgpringer-Verlag, Berlin
Heidelberg New York (1997)



