
B561 – Advanced Database - 1 - Sue Gordon

Database Integrity: Security, Reliability, and Performance Considerations

Susan Gordon
Indiana University South Bend

1700 Mishawaka Avenue, South Bend, IN 46634
slgordon@iusb.edu

Abstract

 Database integrity is a central underlying issue in the
implementation of database technology. Trust in the
correctness of the data that is held by the database system
is a prerequisite for using the data in business, research or
decision making applications. This paper will begin by
discussing the areas that pose challenges in ensuring
database security and reliability. It will look at the benefits
and limitations of possible hardware and software solution
strategies, especially with respect to the considerations of
system overhead and the effect on system performance. It
will specifically discuss the use of error checking and
correction codes to address integrity issues and consider
how these codes may be used to help improve the
performance of database systems.

1. Introduction

In a database system, a method to ensure data integrity

is fundamental to providing database reliability and
security. In particular, as data is communicated or
distributed over networks, a method to validate information
as authentic is required. The value of a database is
dependent upon a user’s ability to trust the completeness
and soundness of the information contained in the data [1].

Integrity requires that data is protected from improper
modification, and integrity is lost if unauthorized changes
are made by intent or by accident [1]. Database integrity
problems can have many sources. A problem may be
caused by a hardware malfunction, a software bug, an
attack on a system, or a user error. The undesirable
changes to a database may also be classified broadly as
malicious and non-malicious [2], in other words, keeping
unauthorized users from accessing or changing the data and
keeping authorized users from accidentally corrupting the
data.

There are many strategies to try to avoid, detect, and
correct problems . Avoidance strategies include encrypting
data, journaling, or using read-only storage in appropriate
situations. Errors may be detected by replicating or
mirroring data, parity checking, and the use of checksums
generated by several kinds of hash functions. Correction
may be accomplished by majority vote if mirroring is done
with more than one copy, by the use of RAID level 5 disks,

or by applying error correction codes such as Hamming
codes.

If loss of integrity is not corrected, the continued use of
corrupted data could result in further damage, inaccuracy,
or erroneous decisions [1].

Some methods used to ensure database integrity may
also have some additional welcome side-effects. They may
be able to enhance database security by detecting
unauthorized modifications to files. They may enhance
database performance if a system can take advantage of the
redundant information required. Integrity checking may
also be able to identify a hardware failure in a disk by
detecting data corruption [1].

This paper begins by looking at storage system
problems and solutions and available database tools and
strategies. It will then specifically consider the role of error
correcting codes and secure hash algorithms in providing
data security and integrity. It concludes with some
additional benefits that may be realized with some of these
methods and proposes a performance and security
enhancement for the minidb system.

2. Disk Storage Systems

Disks can fail when a single bit or few bits will flip.
This problem can often be detected and corrected at the
hardware level by using error correcting codes in the
embedded system of the drive. More extensive permanent
damage to a drive can occur with a head crash or a media
scratch. Mechanical failures can affect a drive motor or
arm and electrical problems can damage the in-drive
circuits [3].

Disk drive firmware can contain upwards of 400,000
lines of code. Firmware problems can result in permanent
or transient block corruption or performance problems.
Errors can also occur in the transport, the bus controller, or
in the low-level software drivers. Figure 1 from
Prabhakaran, Bairavasundaram, Agrawal, Gunawi, A.
ArpaciDusseau, and R. ArpaciDusseau [3] illustrates the
complexity of the layers of the storage system. They
classify disk failures as occuring at three levels: the fail
stop which renders the entire disk unavailable, a block level
failure, and block corruption where the individual data
within a block has been altered.

B561 – Advanced Database - 2 - Sue Gordon

Figure 1: Illustration from Prabhakaran et al. [3]

Database integrity relies on being able to design

prevention, detection, and correction strategies to overcome
these vulnerabilities and to accomplish that in a way that
will still maximize system availability and performance.

2.1 RAID Disk Technology

The design of RAID technology [4] has allowed
improvement in storage performance, reliability and
recovery. The levels of RAID organization divide the disks
into reliability groups with each group having extra check
disks containing redundant information. When a disk fails,
the assumption is that within a short time the failed disk can
be replaced and the information can be reconstructed on the
new disk using the redundant information. The RAID
designs offer varying levels of cost and I/O performance.

RAID level 1 mirrors each disk with a full image copy.
Every write to a disk is also a write to a check disk.
Although the check disk can be used to improve read
performance, this is a costly option. Although the integrity
of the database can be checked by comparing the copies,
there may not be an indication of which copy is good unless
more than two copies are maintained. Both user errors and
malicious changes may be replicated on all copies of the
data. Possibly the strongest advantage of this RAID level is
the ability to immediately substitute the mirror copy in the
case of a catastrophic problem.

RAID level 2 bit -interleaves the data across the disks
in a group and adds enough check disks to correct a single
error. The error correction at level 2 is based on the
Hamming code algorithm which is discussed in section 3.
For a group of 10 data disks, this requires 4 check disks
which is a cost saving improvement on the storage
requirement from level 1. For a large data transfer

operation, performance may improve because the controller
can transfer the I/O in parallel across several disks but
unfortunately, for small data transfers, performance can be
hindered because all of the disks in a group mu st be
accessed for every I/O.

The third RAID level takes into account that most disk
controllers can detect which disk has failed and use the
parity of the remaining good disks to reconstruct data after
a failure. This decreases the reliability overhead cost at the
third RAID level.

The fourth level was designed to bring down the cost
of small disk transfers by striping the data across the array
at the sector level instead of at the bit level. This reduces
the write access requirement to two disks, a data sector and
the parity sector from the check disk. This strategy suffers
from a bottleneck caused by the number of accesses
required of the single check disk.

As shown in Figure 2 from [5], RAID level 5 improves
upon level 4 by distributing the data and the check
information by sectors over all of the disks in a group. This
design improvement allows for all of the disks in a group to
be used to distribute the data access load and removes the
bottleneck of having only a single check disk.

RAID level 6 adds an additional set of parity
information on each drive. This allows a RAID 6 array of
disks to recover from two simultaneous disk failures for a
critical application. The cost of RAID level 6 is a decrease
in performance and an increase in the storage requirement
compared to level 5 [6].

Using large numbers of smaller capacity disks will tie
up less of a database during the reconstruction that would
be required after a failure. Note that level 5 requires that all
of the disks in a group participate in an offline recovery
operation while the advantage of level 1 is that it only
requires the single mirrored disk.

The RAID strategies allow up to two disk failures to be
recovered but were designed to be used with fail stop disk
technology. They als o require the cost of multiple disks to
provide the necessary redundancy.

2.2 Current Storage System Research

Storage systems are moving toward the use of lower
cost disks that do not follow the fail stop model which
causes the disk to stop operating if there is a hardware
error. An undetected fault can lead to further data loss so
that danger needs to be balanced against the considerable
costs that can be incurred in both performance and storage
utilization to provide an acceptable level of error detection
and correction.

RAID technology is not an option in the PC market
where the standard is a computer with one disk drive. It is
estimated that to add a second disk to these systems would
cause the price to increase one hundred dollars. Ongoing
research is investigating ways to improve the current

B561 – Advanced Database - 3 - Sue Gordon

In RAID level 5, the parity blocks (*) contain a
representation of the data from the blocks in the same
stripe.

If a drive fails in the array, the data from the failed physical
drive can be reconstructed onto the hot-spare drive.

Figure 2: RAID level 5 design improvement [5]

system’s ability to detect and recover from errors within the
constraints imposed by a single disk drive.

Vijayasankar, Sivathanu, Sundararaman, and Zadok [7]
propose an improvement to the current systems which
incorporates the use of error correcting codes and
remapping of bad blocks and which distinguishes blocks by
their relative importance on the disk . A higher level of
importance is given to reference blocks which they define
as blocks that impact the ability to reach other disk blocks.
They call their system Self-Recovering Disks (SRDs).

The SRD stores the checksum of each disk block and
computes a comparison checksum during each block read.
Their design is able to distinguish reference blocks as
blocks which contain outgoing pointers to other blocks.
When a reference block is created, its contents are
replicated on the same disk but in a physically separated
location to provide a higher level of insurance against a
locally contained error.

 Their method uses the MD5 algorithm (explained in
section 3) to provide a collision resistant checksum for all
blocks. The checksum is updated as each block is written to
disk and recomputed and verified on a read operation. In
particular if there is a problem in a reference block, there
are three redundant pieces of information available; the
original data block, the replicated data block and the
checksum. If two of the three agree, the data can be
reasonably recovered. They propose that their system can
be used to help protect the lower cost SATA drives which
are now often used in desktop computers. They have
calculated only a 1 – 5% performance overhead as
compared to traditional disks.

They also have compared their method which works at
the disk level as a lower cost alternative to a software

solution such as the IRON file system described below
which also computes checksums for all blocks, replicates
meta-data blocks and provides recovery for corrupted or
inaccessible blocks [3].

Another higher level approach to this problem is to put
more responsibility at the software level of the file system.
File systems traditionally could trust disks to work
correctly or to fail completely. Specifically, it is again the
newer and less expensive SATA disks which do not
guarantee fail stop operation and which are increasing in
use for not only desktop computers but for large-scale
computers and data storage systems.

Prabhakaran et al. [3] have classified failure detection
and recovery techniques in three open source file systems,
ext3, ReiserFS, and IBM’s JFS and as much as possible in
Windows NTFS, a closed source system. They designed
their test workload to include the Posix API calls, functions
such as path traversal, and files of sufficiently large sizes to
exercise special features such as triple-indirect pointers.
They stressed the systems by injecting faults such as block
failures or data corruption and targeted both data blocks
and reference block such as inodes.

In general, they made specific observations of
inconsistency in failure policy, errors in implementing the
policy, and inability to deal adequately with partial disk
failures. Based on their analysis, they have further
proposed an improved IRON (Internal RObustNess) file
system. Their system addresses the same issues as the self-
recovering disks but at the level of a software solution
which places responsibility on the file system software to
keep a checksum for all metadata and data blocks, to
replicate all of the metadata blocks, and to use parity-based
redundancy to protect data.

3. Database Tools

3.1 MySQL Database

Database management systems provide many

administration tools to ensure the security and integrity of a
database. The following discussion refers to examples
from the MySQL database since it is a widely-used open
source database [8].

To support the security of the database system, MySql
incorporates a privilege system to ensure that users may
perform only the operations allowed to them. A user’s
identity is determined both by their username and host from
which they connect. Privilege levels can be specified at the
operation level such as SELECT, INSERT, UPDATE, and
DELETE. As an additional security measure user
passwords are hashed and stored in a 41-byte field (a ‘*’
and a 160-bit value based on a SHA-1 hash).

Damaged database tables can result from many sources
including the hardware and software failures discussed
above, improper shutdown, or file manipulation errors. A

B561 – Advanced Database - 4 - Sue Gordon

database administrator has many commands available to
safeguard the database tables including:
§ CHECK TABLE can be used at several levels to

verify that a table was closed properly through
doing a full key lookup for all keys to ensure
100% consistency.

§ CHECKSUM TABLE to report a table checksum.
The CREATE TABLE statement option
CHECKSUM will maintain a live checksum for
all rows. There is a small performance cost but it
allows corrupted tables to be identified quickly.

§ REPAIR TABLE to repair a possibly corrupted
table.

In addition, there are many system administration tools

provided with MySQL that combine these commands into
useful utility programs such as:
§ mysqlcheck that checks, repairs, analyzes, and

optimizes tables.
§ mysqlbinlog that can read the binary log

statements to help recover from a crash.
§ mysqldump that dumps a MySQL database into a

file as SQL, text, or XML
§ mysqlhotcopy that can be used while the server is

running to makes backups of MyISAM tables.

Traditionally, MySQL had been designed to put the

burden of incoming data validation on the application code.
This philosophy has changed since version 5.0 to give an
administrator an additional tool to specify an “sql_mode”
variable which can choose server-enforced data integrity.
The database will then validate incoming data and reject
data that is the wrong datatype or data that violates basic
integrity rules (such as a date of November 31st).

In addition, if InnoDB tables are specified, foreign key
constraints can be specified and enforced by MySQL.
Table inserts or updates will be rejected if a foreign key
value is specified that does not have a matching key value
in the referenced table. If a referenced key value is to be
deleted or updated and there are matching foreign key
values, MySQL provides the user with action options to
choose such as CASCADE, SET NULL, or NO ACTION.

System design choices are available to ensure the
required level of protection for an application. An
application can use the protection of ACID-compliant
transactions if they choose an InnoDB storage engine. This
protection costs CPU cycles and disk space so MyISAM
tables can be the choice if transaction protection is not
required and performance is the deciding factor.

3.2 Tools for Backup and Recovery

In a production environment, there are many strategies
at the database level that are recommended as best practices
to maximize the availability of a database.

Advice from the IBM website strongly encourages
database administrators to create offline backups on a
regular schedule to provide periodic checkpoints and to
combine that with the journaling options that are available
to ensure that data is not lost [9]. This strategy can be used
in the case of a failure while an update is taking place by
using the journal to reapply or roll-back a transaction. It
can also recover if a database is corrupted, if for example a
hardware failure occurs, by reinstalling the backup copy
and applying the journal from that point forward.

As another example, Microsoft SQL Server™ 2005
software includes the ability to maintain a mirror database
that is kept up-to-date with the production database,
provides ways to perform automatic as well as manual
failover in an emergency, and allows the mirror database to
be located at a remote data center [10] to ensure a means
for disaster recovery.

In choosing the database storage configuration, an
administrator must consider not only the long term safety
and recovery of the data but also the amount of system
down time that may be required to restore a database to a
consistent state.

Lennie et al. [11] patented an algorithm to check a
large and/or replicated database by forming a checksum for
each entry in the database and then using an exclusive OR
to combine the individual record checksums to form a
database checksum. They propose that this checksum
could be recomputed periodically to ensure that the entries
of the database have not been corrupted. They also propose
that this checksum would be maintained at each legitimate
database update by exclusive ORing the checksum of the
entry both before and after modification with the database
checksum. In a distributed environment, the master
database checksum could be used to ensure periodically
that all nodes are synchronized with the master database.
Specifically, they also recommend that this check could
quickly ensure that a replicated database was available to
provide a backup in the case of a system failure.

4. Error Correcting Codes – Hamming

RAID level 2 storage depends on the binary code
developed by Richard Hamming in the 1940s and 1950s
[12]. The code is able to correct any single error in a
sequence of bits and to detect a double error. Check bits
are interleaved with the data bits at the positions with
numbers that are a power of 2. The check bit at position 2k
checks bits in all positions which have bit k set equal to 1 in
their binary representation. The value of the check bit is
determined to make the parity of those bits even.

The tables from Wagner’s book, The Laws of
Cryptography, [12] are reproduced in Figure 3. The table
which he labels as Table 6.1 shows the parity bits 1, 2, 4, 8,
and 16 and indicates which data bits that they would check.
Table 6.2 shows the check bit values in positions 1, 2, 4,
and 8 for the data value 1101101. Table 6.3 illustrates that

B561 – Advanced Database - 5 - Sue Gordon

a bit error in position 11 would cause the 1, 2, and 8
positions to be incorrect. This points exactly to the
incorrect value at the position of 1 + 2 + 8 = 11.

5. Checksums and Secure Hash Algorithms

5.1 Overview

Checking the integrity of the information in the storage
system is essential. The use of checksums is a well
accepted way of ensuring data integrity [13]. Checksums
may be able to detect data corruption due to a hardware
malfunction that could otherwise go unnoticed and cause
further damage. They are routinely used to validate data
that must travel over network links. They can guard against
malicious modification of data. They can be used to check
for changes in metadata access time or modify time fields
which could detect a breach in confidentiality even if file
data has not been modified. Several cryptographic hash
functions that are designed to be collision resistant are
required by government standard.

Computing, storing, or retrieving a checksum needs to
be done in a critical section of a file read or write to ensure
integrity [1]. The calculation and storage decisions for
checksums can affect system performance. Checksumming
can be performed at the byte, block, page, or file level [1].
If the granularity of the data that is checksummed is too
fine, too many computations will be required. At the other
extreme, large granularity will cause additional I/O for
applications which rely on small reads because the entire
amount of data for the integrity check will need to be read.
In general, network traffic is checksummed at each request.
RAID systems perform their physical redundancy checking
at the block level. Integrity checking implemented at the
file system level often operates on pages. Checksumming
by programs such as Tripwire [14], an open source
application level security and data integrity tool that is used
for monitoring and alerting if specific file changes occur,
operates on a file level.

5.2 Cyclic Redundancy Check

A cyclic redundancy check is a type of hash function
that leaves the data intact and appends a checksum to it. It
is often used in network traffic because the recipient of the
message can easily recompute the checksum to confirm the
correctness of the data received.

The number calculated is a 16-bit unsigned number so
there is a 1 in 65535 chance of an error not being detected
because two files would have the same checksum. The
CRC-16 is able to detect all single errors, all double errors,
all odd numbers of errors and all errors with burst less than

16 bits in length. In addition over 99% of other error
patterns will be detected [15].

5.3 Secure Hash Algorithms

A hash function H is a transformation that takes an

input x and returns a fixed-size string called the hash value.
In cryptography and in the government standards for secure
hash functions, the requirements are more strictly defined
as:
§ The input can be of any length.
§ The output has a fixed length.
§ H(x) is relatively easy to compute for any given x.
§ H(x) is one-way.
§ H(x) is collision-free.

A hash function is “one-way” if you begin with a hash
value h, it is “computationally infeasible to find some input
x such that H(x) = h”. A hash function is “strongly
collision-free” if it is “computationally infeasible to find
any two messages x and y such that H(x) = H(y)” [16].

These requirements that are defined for a secure hash
function mean that if you download, copy, or receive a file;
you can use the secure hash value to guarantee that you
have the correct, unaltered data by comparing its hash with
the original.

The MD5 algorithm was developed by Professor
Ronald L. Rivest of MIT in 1994 as a way to verify data
integrity that would be much more reliable than a
checksum. It takes a message of an arbitrary length and
produces a 128-bit “message digest” also called a
fingerprint. It was developed for digital signature
applications.

The MD5 algorithm was classified as a secure hash
function which means that it is “computationally infeasible
to find a message which corresponds to a given message
digest, or to find two different messages which produce the
same message digest” [17]. It was later shown that this
function was not collision-free and it was improved in the
series of currently used algorithms called Secure Hash
Algorithms.

These algorithms were developed by the National
Institute of Standards and Technology (NIST) and are
specified in federal standards to be used when a secure hash
algorithm is required in federal applications. The
fingerprint that is produced is also non-reversible which
means that although the fingerprint uniquely identifies the
data, the data cannot be reconstructed from the fingerprint.

The SHA-1 hash produces a 160-bit output fingerprint
for any message that is less than 264 bits in length. It is
acknowledged to be slower that MD5 but is considered

B561 – Advanced Database - 6 - Sue Gordon

Figure 3: Illustrating Hamming Code calculation and error recovery ability [12]

stronger against an attack. A SHA-2 group of functions has
also been developed which produce longer message digests
ranging from 224 to 512 bits.

In cryptography, an attack is considered a successful
break if is accomplished in less than a “brute force” search
even if it is not a practical risk. Collisions have been found
for MD4, MD5, and SHA-0 algorithms. In 2005, Wang,
Lin, and Yu [18] announced that they were able to find a
method to find a collision in SHA-1 that required less than
269 operations whereas a brute force method would require

280 operations. Even with the existence of a method,
currently a collision for SHA-1 has not been demonstrated
and a practical break for the SHA-2 functions has not been
documented.

However, in light of the research time that is being
invested in breaking the hash algorithms, on November 2,
2007, the government announced a request for candidate
algorithms to be considered for a SHA-3 standard [19].

B561 – Advanced Database - 7 - Sue Gordon

6. Additional Benefits

6.1 Security

System integrity, security, and recovery go hand-in-
hand. The use of data integrity assurance techniques can
enhance the security of computer systems. In the last few
years the number of system intrusion attacks has increased
[13]. By detecting malicious modifications in files, damage
caused by an intrusion can be reduced or prevented.

Redundant information contained in mirrored files,
parity checks, or secure hash functions can be used to check
for file changes or for changes in metadata fields such as
access time or modify time which could indicate a breach
in security even if file data has not been modified.

The database checksum calculated by the methods
patented by Lennie et al. [11] could be recomputed
periodically to ensure that the entries of the database have
not been corrupted. It is also proposed that this check
could quickly ensure that a replicated database was
available to provide a backup in the case of a system
failure.

6.2 Performance

The redundant information that exists as part of a

system’s mechanisms to ensure data integrity can also be
used to improve system performance.

Since duplicate data objects would share the same
checksum value, potential duplicates could be identified. A
128-bit checksum comparison could eliminate the need to
compare a set of much longer data blocks. SFSRO, a
secure read-only file system, names blocks and inodes with
the checksums of their contents to provide an efficient way
to have access to the checksum of the contents of a disk
block [1].

The RAID level disk arrays can provide opportunities
to realize a performance improvement. The mirror disk in
RAID level 1 can be used to improve read performance.
For a large data transfer operation, RAID level 2 may
improve performance because the controller can transfer
the I/O in parallel across several disks. Unfortunately, at
this level the effect can be the opposite for a small data
transfer because all of the disks in a group must be accessed
for every I/O. The fourth RAID level was designed to
bring down the cost of small disk transfers by striping the
data across the array at the sector level instead of at the bit
level so that a write access requires only two disks, the data
sector and the parity sector from the check disk. To further
improve performance by reducing the bottleneck caused by
the number of accesses required of the check disk, RAID
level 5 distributes the data and the check information by
sectors over all of the disks in a group. Although the disk
configuration is targeted to ensure data integrity and

recoverability, all of these RAID levels can offer potential
I/O performance gains [4][5][6].

7. Conclusion

Business, research, and decision making applications
are increasingly dependent upon the availability of data.
The value of a database is dependent upon a user’s ability
to trust the completeness and soundnes s of the information
contained in the data. It is the database administrator’s
responsibility to choose wisely from the available tools to
safeguard the data integrity.

Database integrity problems can have many sources:
hardware malfunctions, software bugs, malicious attacks, or
user errors. There are current tools available to avoid,
detect, and correct these problems . There is ongoing
research to further improve the choices.

System performance and availability requirements
must be considered and balanced by cost constraints. Some
methods used to ensure database integrity may also have
some additional welcome side-effects in system security
and performance.

 It is the methods developed to use cyclic redundancy
checks and secure hash algorithms to ensure data integrity
that I propose to explore further in the minidb application.

B561 – Advanced Database - 8 - Sue Gordon

8. Minidb Implementation – Using Checksum
Information in Database Methods

Section 6.2 on performance discusses methods in use

which leverage the redundant information that is necessary
for ensuring data integrity to also improve system
performance. Specifically, the methods which incorporate
checksums of data can use those checksums to compare for
equality. The method can be used at any level of
granularity that checksums are kept: the record, table, page,
or database level.

The CRC-16 checksum is widely used in monitoring
message traffic. It is able to detect all single errors, all
double errors, all odd numbers of errors, and all errors with
bursts less than 16 bits in length. In addition over 99% of
other error patterns will be detected. It does not have the
security performance of the MD5 or SHA hash algorithms
but it also does not require their complexity. The CRC-16
method returns a two-byte field to validate the data in
comparison to fields of length 32 to 512 bytes for the MD5
and SHA hashes. The two-byte field can easily be kept
and validated at both the record and table level while
developing and testing the checksum database methods
outlined below for the minidb system.

8.1 Minidb Structure Overview

The structure of the minidb application is illustrated in

Figure 4 and includes the methods implemented to take
advantage of the CRC-16 checksum information.

A minidb table is composed of variable length records
written sequentially to a data file. The record structure of
the data file is described by the metafile class. The index
file uses a hashed key value to provide direct access to the
active records in the data file. The index file is used to
store the CRC-16 checksums for the methods implemented.
The table class is composed of the methods which combine
information from the data, meta, and index files into a
working table. The sequentialIO and randomIO classes
provide the necessary file access methods.

The rel_algebra class provides a set of user functions
for table creation; record insert, update, and delete
operations; set operations such as union, intersection, and
difference; and select, project, Cartesian product and join.
The class calls the table class to implement the methods.
The relational algebra class has been expanded to include
the additional intersection method that takes advantage of
the CRC-16 checksums.

The database_tools class has been added to the minidb
system to provide administrative functions to check tables
for equality and to checksum tables based on the CRC-16
values stored at the record and table levels.

rel_algebra table database_tools
temp_table_count: static int table_name: char * tools_table_count: static int

MTA_name: char *
DTA_name: char *
IDX_name: char *

metafile datafile indexfile
table_name: char * index_recor: IDX_Record *
num_fields: int IDX_Record: struct
table_fields: list<field_spec> key: long
field_spec: struct address: unsigned long
 field_name: char * flag: bool
 field_sixe: char * collision: bool
 field_type: char * crc_16: unsigned int
primary_key: char * number_records: unsigned long

hashing: bool

sequentialIO randomIO
field_delimiter: char file_name: char *
record_delimiter: char rand_file: fstream
record_offset: long

Figure 4: Minidb structure overview

8.2 The Use of Checksums for Security and
Integrity

A checksum at the record level can be kept in the index

file for the minidb database. The new index file record
format can store the checksum of each data record as
shown in Figure 5.

struct IDX_Record {
 long key; // key to search for
 unsigned long address; // offset in the DTA file
 char flag; // A = active

 // D = deleted flag
 bool collision; // hash table collisions
 unsigned int crc_16; // checksum
 };

Figure 5: Modified index file record structure

A table class method calculates the CRC-16 value.

The function inputs a record as a character string, processes
the individual bytes, and returns a two-byte checksum for
the record. Since the records are stored on disk and
processed based on their field delimiters, the delimiters are
included in the checksum. An online tool [20] was used in
testing to check the CRC-16 results from the function.

The method developed and patented by Lennie et al.
[11] to check a large and/or replicated database by forming
a database checksum can be modified for the minidb
application. The method proposed in [11] can be used to
maintain a table checksum to determine if two tables are
equivalent. This checksum test will be valid even if one of

B561 – Advanced Database - 9 - Sue Gordon

the tables has been reorganized since it is based on the data
file record contents.

To calculate the table checksum, the CRC_16 value for
a table is initialized to zero when the table is created. As a
record is inserted into the data file and its address and
CRC-16 value are written to the index file, the CRC-16
value for the record is XORed with the CRC_16 value for
the table. When a record is deleted by updating the index
record active flag to a ‘D’, the deleted record’s CRC-16
value is XORed with the table value to remove it. An
update to a record is the equivalent of a delete followed by
an insert.

The table checksum maintenance has been
incorporated into the index file methods, and the table
CRC_16 value is currently maintained in the last record in
the index file.

8.3 The Use of Checksums for Query Optimization

The relational algebra methods that implement set
functions can incorporate the use of the CRC-16 to check
relations to find duplicates. If the two-byte CRC-16
checksums stored in the index files are not equal, the
records do not have to be compared.

As an example shown in pseudo code in Figure 6, the
intersection method can be modified to reduce the number
of records that need to be read from disk for comparison.
The greatest performance benefit would be realized in an
application that did not expect to find many duplicates
between large files. The crc_intersection method call has
been added to the rel_algebra class and is primarily
implemented in the table class.

In this method, all of the records in one index file are
read to see if they are active. For each active record, the
key is used to read the second index file to check for an
active record. If one is found, the CRC-16 values that are
stored in the index records are compared. File records are
only read from disk and compared if the CRC-16 values are
equal. If the file record comparison is equal, the record is
written to the new intersection relation.

In comparison, the hash_intersection method reads
each record of the one file and hashes the records by key
into an array. It reads the second file, hashes the record
key, and checks the array for an intersection. All records of
both files must be read at least once for this method. If one
of the files is not small enough to be hashed into memory in
its entirety, it would need to be partitioned and the second
file would need to be reread and compared to each
partition’s hash array.

In using the CRC-16 hash key value for the records,
there is a one in 65535 chance that two different records
would produce an equal hash key. In an application which
is using a more secure hash algorithm such as MD5, SHA-
1, or SHA-2; it can be reasonably assumed that if the hash
value is equal, the records are the same without performing
the comparison step.

 read each record of index file 1 sequentially
 for (each active data record in file 1)
 {

 use the key to read index file 2 record
 if (data record 2 is active)
 {
 if (record 1 crc_16 == record 2 crc_16)
 {
 if (data record 1 == data record 2)
 {
 write data record to intersection table
} } } }

Figure 6: Pseudo code for file intersection using CRC-16

8.4 Using Checksums for Table Comparison

In the MySQL database, if the CREATE TABLE
statement option “CHECKSUM” is specified, a live
checksum for all table rows will be maintained. The
command CHECKSUM TABLE can be used to report the
live table checksum. It can also be used to recalculate the
table checksum. This tool can be used to check to see if a
table has been corrupted, for example if the system was not
shutdown properly. Similar tools are implemented for the
minidb system in the database_tools class.

The quickest comparison implemented for the minidb
is a method to compare any two tables for equality by using
the table checksums as shown in Figure 7. Each time a
table is reorganized, the old and new checksums can be
compared as an additional way to check table integrity.

// Check tables for equality using CRC-16
//--
bool check_tables_equal(char * relation2)
{
 open index file of table
 open index file of relation2 table

 get_table_crc() for table
 get_table_crc() for table relation2

 // Compare CRC_16 values returned from indexfiles
 if (CRC-16 values are not equal)
 return (false);
 else
 return (true);
// There is a small chance of two unequal tables
// returning the same CRC value with CRC-16.
}

Figure 7: Comparing tables for equality

B561 – Advanced Database - 10 - Sue Gordon

Two more complete table checking tools are
implemented in the database_tools class. The prototypes
for the commands are:
§ char * checksum(char * relation);
§ char * checksum_index(char * relation);

These commands recalculate the value of the checksum for
each active record in the file and validate it against the
checksum stored in the index file. In addition, the methods
recalculate and validate the table checksum. If any record
checksums are found that don’t match the index file
checksum, the record is written to a new relation that is
returned by the method.

The methods differ in the order that they read the data
file. The “checksum” method reads each record of the data
file sequentially. It then reads the index file record to
check if the data record is active and to validate the
checksum. The “checksum_index” method reads the index
file sequentially and for each active record, reads the data
file directly by the record address stored.

The “checksum” method may be expected to be more
efficient in I/O by accessing the data file sequentially. The
method can determine that a table is in error by the table
checksum and can indicate the exact records in error if the
errors are not part of the primary key. But it cannot specify
an exact record if the error is in the key because the record
key is used to access the index file; the index record for a
data record with a key error will not be found.

The “checksum_index” method was written to check
the table by reading the index file and checking every
active record by data file address. In this way, every active
record that has a CRC-16 error can be flagged. The cost of
the additional information comes from accessing each data
file record directly instead of sequentially as in the
checksum method.

8.4 Sample Results

The performance of the CRC-16 methods was

evaluated using files of up to 50,000 random records. Key
values in the range from 0 to 65535 were generated using
the C++ rand() function. The keys are hashed into index
files which have 65536 records; a maximum of 76% of the
index capacity was used.

The “crc_intersction” method was compared to the
“hash_intersection” method using these files. The timing is
compared by saving the value of the system clock()
function before and after each method is used to intersect
two tables. Sample timing code and the associated console
output are shown in Figure 8 for both intersection methods.

The results from the first set of comparisons are shown
in Figure 9. Sets of files containing 50,000 records each
were constructed to produce intersection result sets of
different sizes. The crc_intersection and hash_intersection
functions were timed and the results are shown in Figure 9.

#include <time.h>
#include <stdio.h>

int main()
{
 clock_t before, after;
 double timing;

 rel_algebra rel_test;

 before = clock();
 rel_test.crc_intersection("new_ hash3","new_hash4");
 after = clock();
 timing = (double)after - (double)before;
 timing /= CLOCKS_PER_SEC;
 cout << "Timing for crc_hash intersection = "
 << timing << “ sec.” << endl;

 // The same code was repeated with hash_intersection
 return(0);
}

/* Console Output:

 Number of records in crc_intersection table = 3080
crc_intersection table okay: new_hash3 and new_hash4
Timing for crc_hash intersection = 1.343 sec.

Number of records in hash_intersection table = 3080
hash_intersection table okay: new_hash3 and new_hash4
Timing for crc_hash intersection = 2.625 sec.
*/

Figure 8: Comparing intersection methods

Comparing CRC-16 and Hash Intersections
 FIle Size = 50,000 Records

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

number of records intersected

Ti
m

e
(s

ec
on

ds
)

CRC-16 Hash

Figure 9: Time required as number of records in
intersection result set increases

B561 – Advanced Database - 11 - Sue Gordon

The CRC-16 intersection method required less time in
each case tested but was approaching the hash intersection
time as the number of records in the intersection set
increased.

Comparing CRC-16 and Hash Intersections
 Intersection Result Set ~= 2,000 Records

0

5

10

15

20

25

0 10000 20000 30000 40000 50000 60000

File Size (number of records)

E
xe

cu
tio

n
 t

im
e

(s
ec

o
n

d
s)

CRC-16 Hash

Figure 10: Comparing time required as file size increases
for intersection result set of a fixed size

The second comparison, shown in Figure 10, was

completed by generating files of sizes from 10,000 to
50,000 records which would contain the same intersection
result set of approximately 2000 records. As expected, the
time required for either intersection method increased with
file size but the increase was much slower for the CRC-16
method. For a file size of 10,000 records, the CRC-16
method required 73% of the time of the hash intersection.
At 50,000 records this percentage had decreased
significantly, down to 25% of the hash intersection time.

As the file size increased, the CRC-16 method needed
to read an increased number of index file records but the
number of data file records read was held constant. In
contrast, the hash intersection method needed to increase
from reading 20,000 data records to 100,000 data records.

The file size of 50,000 records could still be hashed
into the memory array at once. If that was not the case, the
first file would have needed to be partitioned and the
comparison file would have to be reread for each partition’s
hash array.

Table checksum test results are shown in Figure 11.
Tests were run in which an error was introduced in the
body of a record and in the key of a record.

The “checksum” method can find an error in the body
of a record and print out the record affected. If the error is
in the key of the record, the table is flagged but the record
is not identified.

The “checksum_index” method can be used to identify
the record in the case of a key error. The additional
information comes with a time penalty. Reading the index
file to identify active records and then reading the data file
directly by record address took 20 – 25% longer for these
test files of 10,000 records.

checksum(“new_hash2”) results:
--
29257^29258^29257 crc_16 not equal to index value.
Checksum error in table new_hash2
The following records were found to have a checksum
error.
 newhash1 newhash2 newhash3

29257 29258 29257
Number of records printed = 1
Timing for checksum new_hash2 = 1.203 sec.

checksum (“new_hash2”) results:
--
Checksum error in table new_hash2
The following records were found to have a checksum
error.
 newhash1 newhash2 newhash3

Number of records printed = 0
Timing for checksum new_hash2 = 1.187 sec.

checksum_index(“new_hash2”) results:
--
29258^29257^29257 crc_16 not equal to index value.
Checksum error in table new_hash2
The following records were found to have a checksum
error.
 newhash1 newhash2 newhash3
 29258 29257 29257
Number of records printed = 1
Timing for checksum_index new_hash2 = 1.469 sec.

Figure 11: Comparing checksum and checksum_index
methods

8.5 Conclusion

The CRC-16 functions were used successfully to

improve performance in the set intersection and to
demonstrate some useful administrative tools. The CRC-16
checksum provided a manageable method to tes t the
program logic and provide some time comparisons. A
secure hash function such as MD5, SHA-1 or SHA-2 could
be used to improve the model.

Another improvement in the minidb implementation
would be a collection of statistics for each table. At a
minimum, the table checksum as well as the number of
index records and data file records could be tracked. This
would allow the system to increase the index file size when
needed and to develop strategies to optimize queries based
on choosing table methods for different file sizes.

B561 – Advanced Database - 12 - Sue Gordon

Bibliography

[1] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok,
“Ensuring Data Integrity in Storage:Techniques and
Applications”, StorageSS'05, November 11, 2005, Fairfax,
Virginia, USA.

[2] James M. Slack and Elizabeth A. Unger, “A Model of Integrity
for Object-Oriented Database Systems”, ACM, 1992.

[3] Prabhakaran, Vijayan, Lakshmi N. Bairavasundaram, Nitin
Agrawal, Haryadi S. Gunawi, Andrea C. ArpaciDusseau, and
Remzi H. ArpaciDusseau, “IRON File Systems”, SOSP’05,
October 23–26, 2005, Brighton, United Kingdom.

 [4] Patterson, David,, Garth Gibson, and Randy H Katz, “A Case
for Redundant Arrays of Inexpensive Disks (RAID)”, Proceedings
of the 1988 ACM SIGMOD International Conference on
Management of Data, Chicago, Illinois, United States, 1988,
Pages: 109 – 116.

[5] “Understanding RAID level-5”, IBM Systems Software
Information Center,
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?t
opic=/diricinfo/fqy0_craid5.html, last accessed November 2007.

[6] “Understanding RAID level-6”, IBM Systems Software
Information Center,
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/index.jsp?t
opic=/diricinfo/fqy0,_craid6.html, last accessed November 2007.

[7] Vijayasankar, Kiron, Gopalan Sivathanu, Swaminathan
Sundararaman, and Erez Zadok “Exploiting Type-Awareness in
a Self-Recovering Disk”, StorageSS’07, October 29, 2007,
Alexandria, Virginia, USA.

[8] MySQL 5.0 Reference Manual,
 http://dev.mysql.com/doc/refman/5.0/en/, last accessed November
2007.

 [9] “Database Backup”, IBM Sy stems Software Information
Center,http://publib.boulder.ibm.com/infocenter/cmod/v8r3m0/in
dex.jsp?topic=/com.ibm.ondemand.iseries.doc/ars4p05393.htm,
last accessed November 2007.

[10] Mishra S., “Microsoft SQL Server 2005 Database Mirroring
Best Practices and Performance Considerations”, SQL Server
Technical Article, February 2006.

 [11] Lennie, R., C. Johnson, L. Emlich, J. Lonczak, “Method of
Comparing Replicated Databases Using Checksum Information”,
US Patent 5974574, issued Oct. 26, 1999,
http://www.patentstorm.us/patents/5784574-fulltext.html, last
accessed November 2007.

[12] Wagner, Neal R., The Laws of Cryptography, 2003,
www.cs.utsa.edu/~wagner/lawsbookcolor/laws.pdf, last accessed
November 2007.

[13] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok,
“Enhancing File System Integrity through Checksums”, Stony
Brook University, Technical Report FSL-04-04.

[14] Tripwire, Inc., “Open Source Tripwire”, 2000,
http://sourceforge.net/projects/tripwire, last accessed November
2007.

[15] Fairhurst, G. “Cyclic Redundancy Check”,
 http://erg.abdn.ac.uk/users/gorry/course/dl-pages/crc.html

[16] “What is a hash Function”, RSA Laboratories,
http://www.rsa.com/rsalabs/node.asp?id=2176

[17] “MD5: Introduction”,
http://userpages.umbc.edu/~mabzug1/cs/md5/md5.html,last
accessed November 2007.

[18] Wang, Xiaoyun, Yiqun Lisa Yin, and Hongbo Yu, “Finding
Collisions in the Full SHA-1”, Advances in Cryptology --
Crypto'05, http://www.infosec.sdu.edu.cn/paper/sha1-crypto-auth-
new-2-yao.pdf, last accessed November 2007.

[19] DEPARTMENT OF COMMERCE National Institute of
Standards and Technology, “Announcing Request for Candidate
Algorithm Nominations for a New Cryptographic Hash Algorithm
(SHA–3) Family”, Federal Register / Vol. 72, No. 212 / Friday,
November 2, 2007
http://www.csrc.nist.gov/groups/ST/hash/documents/FR_Notice_
Nov07.pdf, last accessed November 2007.

[20] Bies, L., “On-line CRC calculation and free library”,
http://www.lammertbies.nl/comm/info/crc-calculation.html,
last accessed December 2007.

