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ABSTRACT
Observing the motion of endocardial borders in echocar-
diographic cineloops is an important component for both
the qualitative and quantitative analysis of regional left
ventricular function. Consequently, using the computer
to enhance endocardial border pixels is an important first
step both for annotating and eventual computer analy-
sis of echocardiograms. Previous work has demonstrated
the viability of pulse coupled neural networks for enhanc-
ing echocardiograms acquired using an acoustical contrast
agent. In this study we investigate using pulse coupled neu-
ral networks as a visualization tool, highlighting, frame-by-
frame, the endocardial border in left-ventricular short-axis
cineloops.
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Introduction

The detection of potential border pixels is an important
step in many computer vision applications, including the
analysis of echocardiographic images. Similarly, the as-
sessment of many diseases of the heart center around the
morphology of the left ventricle over time[1]. Identifying
the myocardial-blood pool border, or endocardial border, is
one important step toward assessing the contractile pattern
of the myocardium. Unfortunately, echocardiogram im-
ages often present challenges to computer vision systems
due to low contrast and noise.

Many approaches to isolating the endocardial border
have been described. Typically they include low level im-
age processing, noise reduction, and edge detection. Exam-
ples of this processing include the popular Soble and Canny
edge detectors.

Post-processing is also used to identify edges and re-
gions. Post-processing often incorporates information to
form models such as active shapes and contours, and math-
ematical morphology[2].
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Pulsed Coupled Neural Networks

Recently there has been enhanced interest in biologically
inspired models of computation. These range from ge-
netic algorithms to models of the immune system. Of these
models, artificial neural networks have enjoyed the most
exposure in applications. Examples in echocardiology in-
clude LV shape recovery[3] and LV contour detection[4].
These neural networks are engineering metaphors inspired
by contemporary models of neural interactions, and are not
models of any specific biological process. For example,
the popular multi-layered perceptron encodes information
based upon the average firing rate of these abstract neurons,
ignoring the temporal relationships between the individual
neurons.

In contrast, the Pulse Coupled Neural Network
(PCNN) attempts to model neuron interactions in time.
Based upon the work of Eckhorn[5, 6] modeling interac-
tions in the visual cortex of the cat, and more recently, pri-
mates, the PCNN forms a high order network which pulses
through time forming a succession of binary pulses. When
the input is an image, this results in a series of binary im-
ages. Attractive aspects of the PCNN for echocardiology
include relative immunity to translation, scale, and rota-
tion in the image[7]. Imaging applications of pulse-coupled
neural networks include contrast echocardiology[8], im-
age shadow removal[9], and digital mammogram segmen-
tation[10].

Figure 1 shows a schematic diagram of a single
PCNN neuron. It is divided into three primary functions:
feeding, linking, and pulse generation. This PCNN neuron
is modeled by the following equations[7, 11]:

Fij(t) = e−αF δtFij(t−1)+Sij +VF

∑

kl

WijklYkl(t−1)

Lij(t) = e−αLδtLij(t − 1) + VL

∑

kl

MijklYkl(t − 1)

Uij(t) = Fij(t)(1 + βLij(t))

Yij(t) =

{

1 if Uij(t) > Θij(t)
0 Otherwise

Θij(t) = e−αΘ∆tΘij(t − 1) + VΘYij(t)

Where F is the feeding component,L the linking
component,U the neuron internal activity,Y the neuron
output, andΘ the dynamic threshold.M andW represent
encode weights from the individual inputs in the receptive
field for the feeding and linking functions respectively, and

© 2006 EHWC July 16 - 19, 2006, Santos, BRAZIL 
Environmental and Health World Congress 

4 



+1

Θ
∑

∑

Y (t)

Y (t − 1)

Step Function

Linking

FeedingInput

Figure 1. PCNN Schematic

β is the linking strength. These equations are applied in
sequence at each iteration of the simulation.

In image processing, an individual neuron receives in-
put to its feeding function from a single, scaled, gray level
pixel in the original image along with a receptive field con-
sisting of a weighted neighborhood. This results in one ar-
tificial neuron being directly stimulated by a corresponding
pixel and its neighbors from the input image, preserving the
geometric structure of the image.

Assuming that the threshold is initially set to zero,
any activity at the input will cause a corresponding output
from the pulse generation. This, in turn, raises the thresh-
old suppressing subsequent output. As the threshold de-
cays neurons with activity exceeding the threshold pulse,
reestablishing a high threshold for them, but also raising
the probability that adjacent neurons will be fire at the next
iteration as a result of the linking feedback to the recep-
tive field. In this sense each artificial neuron can be seen
as initiating an autowave of activity which propagates until
colliding with another wavefront.

Figure 2 illustrates the action of the PCNN when stim-
ulated by the first frame in the short-axis cineloop shown
in Figure 3. For this, and all subsequent images, alpha was
empirically fixed at 10.0, 1.0, and 15.0 for the feeding, link-
ing, and threshold computations respectively, and beta was
0.1.

Initially, at iteration one, every non-zero pixel causes
the PCNN to fire driving the threshold high as indicated by
the entirely white image. Over time the threshold decays
until neurons connected to those pixels providing the high-
est stimulation fire, in this case at iteration seventeen. This,
in turn, stimulates the surrounding pixels causing them to
fire if they are close to their respective thresholds.

Application

Software to simulate the PCNN was written in Python, and
then applied to the left-ventricular short-axis cineloop for
a healthy canine. For each frame processed, the program
reads the frame and represents the pixels as floating point
values between zero and one. The resulting image forms
the input to the feeding function of the PCNN.

As described, the PCNN produces a sequence of bi-
nary images representing the neuron firing pattern at each
iteration. Consistent with other work[8], we include user
interaction to identify the iteration at which the best fit to
the data occurs. Specifically:

1. The user selects a prototype frame from the original
cineloop.

2. The PCNN is applied to the selected frame producing
a time-series of binary images representing the activ-
ity at each iteration.

3. The user selects the iteration at which the PCNN pro-
duces the best visual fit to the desired image features.

4. The PCNN is applied to all frames in the original
cineloop, with activity at the selected iteration defin-
ing the image enhancement.

Again referring to Figure 2, we note that iteration
eighteen forms the best visual fit. The PCNN is then ap-
plied to each frame in the cineloop, with its output at the
selected iteration overlayed on the source frame, forming a
new image sequence. Figure 4 shows a sequence of original
cineloop frames and 5 shows the annotated frames. Note
that the corresponding highlights, or annotations, track the
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(a) Iteration 00 (b) Iteration 15 (c) Iteration 16 (d) Iteration 17

(e) Iteration 18 (f) Iteration 19 (g) Iteration 20 (h) Iteration 21

Figure 2. PCNN Iterations

(a) Feeding Input (b) Resulting Border

Figure 3. Sample Cineloop Frame and Corresponding PCNN Enhancement

tissue borders as the ventricular morphology changes with
contraction.

To further illustrate the applicability of this approach,
we demonstrate it using an ischemic cineloop sequence.
Figure 6 shows a series of ischemic cineloop frames. Again
the user selects the best-fit iteration for the PCNN, which
is then applied to each frame of the loop. The result is
illustrated in Figure 7. While not apparent in the printed
images, this sequence contains many more noise artifacts,
making the border-tracking more difficult. In this case ad-
ditional image pre-processing, such as low-pass filtering,
could be useful but we elected to work with the unpro-
cessed cineloop to demonstrate the PCNN response in a rel-
atively harsh environment. Note that, while there are more
artifacts, the PCNN still manages to track the endocardial
border of the ischemic myocardium through the contraction
cycle.

Summary

There are, in addition to its direct application, other po-
tential applications for this cineloop enhancement. De-
rived images, such as PCNN border-enhanced Synthetic M-
mode images[12, 13] could augment regional wall motion
studies, for example. We would also like investigate its po-
tential in a hybrid solution to border enhancement with ac-
tive contours. It should be noted that the images presented
here represent scan-converted gray-scale data. We would
like to extend our investigation to consider the raw radio
frequency data from the machine. Finally, our initial stud-
ies lead us to believe that pulse coupled neural networks
hold promise for the automated enhancement of left ven-
tricular endocardial borders. Ultimately, this could leadto
computer-assisted, quantitative assessment left ventricular
function in clinical practice.
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(a) Frame 04 (b) Frame 05 (c) Frame 06 (d) Frame 07

(e) Frame 08 (f) Frame 09 (g) Frame 10 (h) Frame 11

Figure 4. Cineloop Frames

(a) Frame 04 (b) Frame 05 (c) Frame 06 (d) Frame 07

(e) Frame 08 (f) Frame 09 (g) Frame 10 (h) Frame 11

Figure 5. Processed Cineloop Frames
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(a) Frame 06 (b) Frame 07 (c) Frame 08 (d) Frame 09

(e) Frame 10 (f) Frame 11 (g) Frame 12 (h) Frame 13

Figure 6. Ischemic Cineloop Frames

(a) Frame 06 (b) Frame 07 (c) Frame 08 (d) Frame 09

(e) Frame 10 (f) Frame 11 (g) Frame 12 (h) Frame 13

Figure 7. Processed Ischemic Frames
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