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Abstract 

For this project, I wrote a Scheme interpreter in R, which allows programs written in it to call R 

functions directly and to be exported as R functions themselves. In addition to commands to 

evaluate strings as Scheme expressions directly or run entire files of Scheme code, it includes a 

fully functional read-eval-print loop (REPL). The interpreter includes full support for tail call 

optimization, which was accomplished through a sort of just-in-time compilation that converts 

Scheme expressions into single-argument R functions and the creation of a simple virtual 

machine that implements a modified version of the trampoline pattern using those functions, with 

Scheme environments as virtual stack frames. This paper also includes a partial list of the 

syntactic forms implemented in the interpreter’s version of Scheme, including support for the 

creation of macros through the define-macro command. 

1. Introduction

For my project, I created a Scheme interpreter that runs within R and allows programs written in 

it to directly call R functions. 

Scheme is a dialect of Lisp created in 1975 by Gerald Sussman and Guy Steele, drawing 

influences from ALGOL 60 and lambda calculus (Sussman and Steele 1975). Like most Lisp 

dialects, it’s a declarative functional language. Unlike most Lisp dialects at the time, it features 

lexical scoping, meaning that functions look for variable bindings in the environments in which 

they were defined rather than in the environments from which they were called. 

R is a language primarily used for statistics and data analysis, created by Ross Ihaka and Robert 

Gentleman in 1993 as an open-source version of the language S, with similar lexical scoping 

rules to Scheme (Peng 2022). It also has an extremely large library of third-party packages that 

can be downloaded and installed with the install.packages function, implementing features 

such as advanced 2d and 3d data plotting, creating different types of machine learning models, or 

plotting the ROC curves of binary classifiers. This library is, in fact, the main reason that I chose 

R as the underlying language for my interpreter. 

This project was motivated by two main reasons. First, one of the defining features of Scheme is 

tail call optimization, which allows certain types of recursive functions to be executed with 

constant space complexity and thus, without having to worry about stack overflows. This makes 

it easier to represent some mathematical concepts as programs. This is particularly useful in a 

math-heavy language such as R. Second, writing an interpreter gave me a deeper understanding 

of how computer programs work at a basic level. In particular, figuring out my implementation 

of tail call optimization involved creating what was essentially a simplistic virtual machine and 

manually handling its call stack. My interpreter takes the form of an R package including, among 
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other things, a function that launches a basic read-eval-print loop (REPL) and other functions 

that evaluate strings of text and text files containing Scheme code. 

2. The Lexer and Parser 

The first two components of any compiler or interpreter are the lexer and the parser; the former 

converts raw text into a series of tokens, and the latter uses those tokens to build data structures 

representing the program’s code. Both are fairly straightforward in this case, as every expression 

in Scheme is essentially a direct representation of its own abstract syntax tree. Anything 

surrounded by double quotes is a string, and anything else follows a few simple rules: 

• Comments start with a semicolon and end with a line break 

• Lists are surrounded by parentheses, with elements separated by whitespace 

• Pairs and improper lists (see the section “Pairs and Lists”, below) have a period before 

the final element 

• Vectors are the same as lists, but preceded by a # sign. For example, #(1 2 3). Unlike 

lists, there is no such thing as an improper vector; for instance, #(1 2 . 3) is not a valid 

Scheme expression 

• There are a handful of reader macros, special characters that indicate that whatever 

follows them should be treated as the second entry in a two-element list whose first entry 

is determined by the reader macro itself. For example, ,x is short for (unquote x) and 

'(1 2 3) is short for (quote (1 2 3)). My implementation of Scheme also allows 

users to define their own reader macros, as will be explained in more detail later. 

My particular implementation of Scheme has some additional rules that evolved as I modified it 

to better work with R, but I’ll address those as they come up in the report. In any case, the above 

were the rules I had in mind when I initially designed the lexer and parser. 

2.1 The First Lexer 

My first attempt at making a lexer used the same basic approach as Peter Norvig’s simple Lisp 

interpreter (Norvig 2010a), modified to support strings. The idea was fairly simple: for a first 

pass, the lexer would take a string of input and use R’s strsplit function to split it up at every 

double quote. This would result in a vector of strings, alternating between those that needed to be 

further split into tokens and those representing literal strings. The latter didn’t need much further 

processing, just having to convert escaped characters into their literal forms (\n into a line break, 

for example), while the former would require a few passes of string substitution: 

• convert parentheses and reader macros into versions surrounded by whitespace 

• remove any substring beginning with a semicolon and ending with a line break 

• convert any series of multiple whitespace characters into a single space 

As an example, doing this would have converted the following: 

(define (f x) 
  (display 'hello)(newline) 
  (+ x 3)) 

into ( define ( f x ) ( display ' hello ) ( newline ) ( + x 3 ) ). From there, 

another use of strsplit would divide the new string along any whitespace, then I could use the 



Map function to create a list of the results of passing each term to a function that attempts to turn 

its argument into a number and, if that fails, turns it into a symbol instead. Splicing the resulting 

lists and the literal strings all into a single big list would give me the string of tokens I needed, 

which could then be passed to the parser. 

2.2 The Second Lexer 

The problem with my first lexer became apparent when I realized that there was no clear 

precedence between the use of double quotes to denote literal strings and the use of semicolons 

and line breaks to denote comments. Both had clear, unambiguous precedence over parentheses: 

a double quote between parentheses still denotes the start of a string, and a semicolon between 

parentheses still denotes the start of a comment, but parentheses between double quotes are just 

part of the string, and parentheses between a semicolon and a line break are just part of the 

comment. However, things are less cut when you compare comments and strings: a double quote 

in the middle of a comment means nothing, and a semicolon between double quotes is just 

another character in a string. Which to use depends purely on which character is encountered 

first, rather than there being clear-cut rules that can be applied to the entire expression in order. 

Consider the following: 

(this is ;unfortunately "not" quite 
 correct) 

Splitting it along the double quotes first and then applying the other rules will, once the lexer and 

parser have both finished, result in the list (this is "not" quite correct) rather than the 

desired list (this is correct), as the substring containing the semicolon ends before the word 

"not". Conversely, attempting to parse for comments before strings means that the following: 

(a b "this is a sentence; it contains a semicolon" 
 c d e) 

will start by removing everything from the semicolon on in the first line, including the double 

quote. Parsing the result will yield the list (a b "this is a sentence c d e)"), assuming 

the parser returns upon running out of tokens rather than throwing an error because its closing 

right parenthesis is missing. 

To address this problem, I turned to the package rly, which contains R implementations of the 

tools lex and yacc, used to make lexers and parsers respectively. While the parser I had written 

was both simple enough and functional enough that modifying it to work with a new lexer was 

more worthwhile than trying to start from scratch with yacc, redoing the lexer with lex was 

easier than trying to reinvent the wheel and come up with my own way to process strings into 

tokens that would work with rules that had equal precedence. 

The second lexer is actually much more straightforward than the first: each token type consists of 

a regular expression and a function. Any text that matches the regular expression for a given type 

is converted into a token of that type, which is then passed to the function for processing. For 

example, processing literal strings involves running them through the same transformations as in 

the first lexer, and processing complex numbers involves converting them into a+bi format (my 

interpreter also accepts values like 2i or 13+i, which would be converted into 0+2i and 13+1i 

respectively) and then passing them to as.complex for conversion into actual numbers. 



2.3 The Parser 

Due to Scheme’s extremely uniform syntax, the parser isn’t particularly complicated. It consists 

of two functions, lex.next and lex.reader. As the name might imply, lex.next queries the 

lexer and generates the next term. This usually just means returning the next token, but there are 

a few exceptions. If the next token is a reader macro, the next term will be a list consisting of the 

symbol corresponding to that macro and the term after that (retrieved with a recursive call to 

lex.next). If the next token is a left parenthesis, the next term will be a list, generated by a call 

to lex.reader. The opening tokens for vectors and mutable lists work the same way, only the 

result of the call to lex.reader is passed to either as.svector or as.mlist before being 

returned. 

The other half of the parser is lex.reader, which assembles the terms from lex.next into lists. 

It works by repeatedly calling lex.next for more terms and adding them to a list until it either 

runs out of terms or hits a right parenthesis, right curly bracket, or right square bracket. When 

that happens, it either returns or, if the symbol it encountered isn’t the one it was expecting (for 

example, a right square bracket to end a list that was started with a left parenthesis), throws an 

error. 

2.4 Scheme Data Types 

Most of the atomic data types (that is, those that can’t be further subdivided in a meaningful 

way) in Scheme are the same as in any other programming language. Strings are sequences of 

characters, numbers are values that can be used to perform arithmetic, procedures are values that 

do things when called with other variables as arguments, and so on. One difference between 

Scheme and most other languages, including other versions of Lisp, is that while any data type 

can be passed to logical operators like if or not, only the false boolean value (which, in my 

implementation, can be written as #f or false, both of which are case-insensitive) counts as 

false. Any other values, including the empty list and numerical values equal to zero, count as 

true. 

Another Scheme data type not found in many other languages, though it is found in other 

versions of Lisp and in R, is the symbol. Symbols are similar to strings, but generally represented 

without quotation marks; "cat" is a string, for example, and cat is a symbol. There are 

functions for converting symbols into strings and vice versa, but symbols are generally just 

unique identifiers with descriptive names. R and Scheme both use them internally as variable 

names, and they can also be used in the same way as enumerations in other languages. 

2.5 Lists and Pairs 

By far the most important data structure is the list. In the usual representation, a list is 

surrounded by parentheses and the items within it, which can be of any type, are separated by 

whitespace. For example, (1 "cat" (2 3) apple) is a list consisting of the number 1, the 

string "cat", the list (2 3), and the symbol apple. The empty list, represented by just (), is the 

only list that also counts as an atom. Because code can often include deeply nested lists, I’ve also 

made it possible for lists to be surrounded by square brackets instead of parentheses, to make it 

easier to keep track of which ones match up. For instance, it’s easier to tell where each nested 



expression in (let ([a (f (g [h x]))]) ...) begins and ends than it would be if it was 

written as (let ((a (f (g (h x))))) ...). 

Even simpler than lists are pairs, also known as cons (short for “construct”) cells after the 

command used to create them. A pair consists of two items, which can be any type of object 

including other pairs. For historical reasons dating back to the first implementation of LISP on 

the IBM 7090 (McCarthy et al. 1962), the first item in each pair is known as the car (short for 

“Contents of the Address Register”) and the second is known as the cdr (short for “Contents of 

the Decrement Register”). These names are also shared by the functions that access each half of 

a pair, and because the functions are so commonly composed with one another, Scheme includes 

a sort of shorthand for the combinations: any function whose name is a c and r with some 

combination of a and d in between is a composition of car and cdr in the same order as the a 

and d terms. For example, caddr(x) is equivalent to car(cdr(cdr(x))). My version of 

Scheme, like most, includes functions of this sort going from caar to cddddr. 

Pairs are represented almost the same way as lists, except that there’s a period between the two 

terms. For instance, a pair whose car is 1 and whose cdr is 2 would be represented as (1 . 2). 

If the cdr of a pair is itself a pair, its parentheses and the period preceding it can be omitted. For 

example, (1 . (2 . 3)) could also be written as (1 2 . 3). The same applies to the empty 

list, so (a . ()) could just be written as (a). This is because in most versions of Scheme and 

Lisp, lists are implemented as linked lists with pairs as the nodes, with the car of each pair being 

the value of an item in the list and the cdr being a pointer to the next pair, except for the final 

element in the list, whose cdr is just the empty list. Thus, the list (1 2 3 4) is in fact the series 

of pairs (1 . (2 . (3 . (4 . ())))). It’s also perfectly legal, though less common, to omit 

the dots and parentheses from only some of the pairs in the list, meaning the above could also be 

written as (1 . (2 3 4)) or (1 2 . (3 4)). 

A list whose final cdr is something other than the empty list, such as (1 2 3 4 . 5), is known 

as an improper list. While lists in R are implemented differently, and my interpreter stores its 

lists in the R format for ease of interoperability with native R functions, improper lists are useful 

enough in some parts of Scheme that I actually found a way to emulate them: when an improper 

list is created, either through direct user input or as a result of calls to cons, the final entry is 

stored inside an object of the R class dotted.tail. 

Unlike Scheme, R allows items in lists to have names. As these are used by the do.call function 

to pass named arguments to R functions, this was a feature I felt it necessary to include, which I 

did by borrowing the syntax that the language Racket uses for keyword arguments (Schwarzer 

2023). For example, the list created by the command list(a=1,b=2) would be represented in 

my version of Scheme as (#:a 1 #:b 2), and the function call seq(1,10,length.out=4) 

would be written as (seq 1 10 #:length.out 4). 

2.6 Mutable Data Structures 

Pairs (and, by extension, lists) in most versions of Scheme are also mutable, meaning that it’s 

possible to change the car or cdr of an existing pair using the commands set-car! and set-

cdr!, without changing the address of the pair itself in memory. This can lead to convoluted self-

referential structures, as there’s nothing stopping users from setting the car or cdr or a pair to 

itself, and Scheme in fact has a specific notation for when that happens: a pair or list which 



contains itself is written in the form #n=..., where n is an integer indicating the number of self-

referential structures that have already appeared in the current expression and ... is the way the 

pair or list would normally be represented. In this representation, any further instances of the pair 

or list are replaced with #n#. For example, a pair whose car is 23 and whose cdr is itself would 

be represented as #0=(23 . #0#), and a pair whose car is itself and whose cdr is the 

aforementioned pair would be represented as #0=(#0# . #1=(23 . #1#)). 

Lists in R are, of course, not mutable. R does include a data structure called a pairlist that works 

the same way internally as traditional Scheme or Lisp lists, but there’s no user-accessible way to 

directly change the car or cdr of a pairlist. When I did so manually (by using the Rcpp package 

to directly access the necessary C functions in the R API), I discovered that both improper lists 

and self-referential lists frequently cause R to freeze and/or crash. However, because mutable 

pairs and lists are essential to implementing many useful Scheme features, I took another cue 

from Racket (Flatt and PLT 2023b) and created a separate mutable pair data type called mpair, 

which can be used to construct mutable lists. As in Racket, these are printed the same as regular 

lists except that they use curly braces instead of parentheses. Unlike in Racket, they can also be 

input directly; typing {1 2 3} into the REPL will evaluate to a mutable list of the numbers 1 

through 3. 

Because environments are the only mutable types in R, each mutable pair is simply an 

environment containing the variables car and cdr, with its class set to mpair. Mutable pairs and 

lists are created with the mcons and mlist functions rather than cons and list, but the rest of 

the functions for dealing with lists (car, cdr, cadr, and so forth) are generic functions that use 

R’s S3 class system to call more specific counterparts; car(x), for example, will call either 

car.default(x) or car.mpair(x) depending on whether or not x is a mutable pair. 

The other mutable data structure in Scheme are vectors, which are similar to arrays in C or Java: 

they support random access, and each member can be referenced by its index, with the first being 

at position 0. Being mutable, they are of course also implemented as environments with a custom 

class identifier. Values are read from vectors with the command (vector-ref vector index) 

and assigned with the command (vector-set! vector index value). 

2.7 Scheme Output 

For the most part, values in Scheme are output in the same format in which they would have 

been entered by a user. The main exceptions are that lists and symbols entered into the REPL 

would need to be preceded by an apostrophe to stop them from being evaluated (see the section 

on Eval and Apply below) and self-referential structures like #0={1 . #0#} can’t be entered 

directly as input. There are, however, some data types that can’t be directly printed in a human-

readable format, such as I/O ports or functions. When printing such cases, Scheme will typically 

default to a placeholder in the format #<class>, where class is the type of the object, such as 

#<input-port> or #<function>. This is generally all the information provided, though I have 

been able to add more information in a few specific cases. Scheme procedures that have been 

defined with names (as opposed to those created directly with lambda expressions) will include 

those names when printed, such as #<procedure:square>. Similarly, promises will display 

either the expression they’re meant to evaluate or the result of the evaluation, depending on 

whether they’ve been forced yet. For example, the promise to evaluate the expression (+ 2 2) 

will display as #<promise:(+ 2 2)> before being evaluated and #<promise!4> afterward. 



To display its output, my interpreter uses the function scmprint, which also uses R’s class 

system to handle different types of output. When dealing with lists, mutable pairs, vectors, and 

promises, it starts by calling the function mapcycle, which searches through all four types for 

self-referential structures using the following algorithm: 

1. It creates an empty list to serve as a repository of all the self-referential terms it 
finds; 

2. It then calls the internal function explore, with its first argument being the term it 
wants to examine and the second, which it will use as a list of terms that have 
already been explored, starting as an empty list; 

3. If the term is not a mutable pair, vector, promise, or non-empty list, it returns 
immediately because no other data structure could hold anything self-referential 
anyway. 

4. If the term is one of the aforementioned types, explore checks if it’s already on the 
list of used terms. If so, it adds the term to the list from step 1 and returns. 

5. If the term is not already in the list of used terms, it recursively calls itself on every 
term in the list/vector/pair/promise, passing itself a version of the list of used 
terms that has the current term appended to it. 

By passing the list of used terms to itself instead of maintaining it as a global variable, explore 

guarantees that if it runs into a term that’s already on the list, that’s because it’s in a loop and not 

just because the original expression includes the same term twice in different places. 

Using the list from mapcycle and a special object that keeps track of what numbers have been 

assigned to self-referential terms, scmprint deals with data structures by printing their essential 

elements (such as parentheses and whitespace for lists) directly and recursively calling itself to 

print each individual term. It also accepts as an optional argument a function to direct its output 

(defaulting to cat), so that it can easily be repurposed to write expressions to files or build them 

as strings. When it encounters objects of types it’s unfamiliar with, its default behavior is to use 

capture.output to save the result of passing them to R’s print function, then pass the 

resulting text line-by-line to the specified output function. 

3. Environments 

An environment is basically just a collection of variable bindings. Environments are hierarchical, 

with any variables not bound in a given environment having whatever values they had in its 

parent, or its parent’s parent, and so on. Environments in my version of Scheme are implemented 

as pseudo-objects, made possible by the fact that R includes both first-class functions and lists 

with named items. When the function extend_env is called to create a new environment, it 

creates a list to hold the new environment’s bindings, as well as methods to define, reassign, and 

look up values in the new environment, passing requests to the parent environment as necessary. 

It then creates a list of those methods by name, sets its class to scmenv, and returns it. 

Scheme is unlike most other languages in that it has two separate commands for binding 

variables: define always binds the variable in the environment it was called from, whether that 



environment already contained a variable by that name or not, and set! seeks out and overwrites 

the existing binding of a variable, whether that’s in the environment it was called from, or in the 

parent of that environment, and so on, throwing an error if it can’t find a binding to overwrite. 

The exclamation mark in set! is there because it can change things outside of its immediate 

environment, a trait it shares with the similarly named functions set-car!, set-cdr!, and 

vector-set!. 

Within Scheme, environments can be accessed by calling the following zero-argument functions: 

• global-env returns the Scheme global environment, which can also be accessed as a 

variable under the name user-interaction-environment; 

• reference-env returns a copy of the Scheme global environment as it was when the 

interpreter first launched, with only the predefined bindings; 

• null-env returns an environment with no bindings whatsoever, though it will still be 

able to read the bindings in the global R environment; 

• current-env, which is technically a special syntactic form but works like a function, 

returns the environment in which it was called. 

As an example of the difference, if the variable x has the value 7 in the global Scheme 

environment, then the expression (let ((x 2)) (eval '(+ x 3)(global-env))) will return 

10 and the expression (let ((x 2)) (eval '(+ x 3)(current-env))) will return 5. 

3.1 Eval and Apply 

Scheme, like pretty much every version of Lisp since 1962 (McCarthy et al. 1962), is based 

around the two interconnected functions eval and apply, which Smalltalk developer Alan Kay 

once described as “Maxwell’s Equations of Software” (Feldman 2004). 

Of the two functions, apply is the simpler one to explain. It performs a function call of the 

function it receives as its first parameter by using the second parameter as the list of arguments 

for the function. For this, when passed a procedure and a list of arguments, it extends the 

procedure’s environment by binding the variables in the procedure’s parameter list to the 

corresponding values in the list it was passed. This is also why it was so important to retain 

support for improper lists, as they allow procedures to accept variable numbers of arguments. For 

example, if the procedure f has the parameter list (a b . c), then calling apply on f and the 

list (1 2 3 4 5), which can also be written as (1 2 . (3 4 5)), would create an environment 

in which a was bound to 1, b was bound to 2, and c was bound to the list (3 4 5). Once this 

new environment has been created, apply then uses eval to evaluate the terms in the 

procedure’s body one by one in this new environment. 

The other half of the pair, eval, forces evaluation to be performed on the arguments. For this, it 

takes as its arguments an expression and an environment, then evaluates the expression 

according to the following rules: 

• If the expression is a symbol, eval returns the value bound to it in the specified 

environment. 

• If the expression is neither a symbol nor a list, eval returns it as-is. For instance, the 

number 23 evaluates to 23, and the string "skidoo" evaluates to "skidoo". 



• If the expression is a list, its first term is a symbol, and that symbol is one of Scheme’s 

keywords (if, begin, quote, etc), it’s evaluated by the rule corresponding to that 

symbol. For example, the rule for an expression starting with quote is to return its second 

term verbatim, so (quote (+ 2 2)) evaluates to the list (+ 2 2). 

• If the expression is a list, but its first term either isn’t a symbol or is a symbol that doesn’t 

match a Scheme keyword, eval recursively calls itself on every term in the list one by 

one then calls apply, with the result of evaluating the first term as its procedure and the 

results of evaluating the rest of the terms as its argument list. This means that a function 

with no arguments is called simply by surrounding its name in parentheses; the 

expression runtime will return the function runtime, but the expression (runtime) will 

call the function runtime and return the result. This also means excess parentheses are 

important in a way they wouldn’t be in other languages; while R has no problem 

evaluating (2)+2 to get 4, trying to evaluate (+ (2) 2) in Scheme will throw an 

exception because 2 isn’t a function. 

My particular implementation is somewhat atypical because in addition to a Scheme procedure, 

my version of apply will accept an R function or a string as its first argument, passing them to 

the function do.call, which is basically R’s equivalent of apply. Since eval handles any list 

whose first term isn’t a Scheme keyword by passing it to apply, this allows users to call R 

functions from within Scheme. 

Furthermore, in cases where an R function shares the name of a Scheme procedure, users can call 

the R version directly by using a string. For example, in Scheme, the symbol lcm is bound to a 

procedure that takes an arbitrary quantity of numbers as its arguments and returns their least 

common multiple, while the R function lcm takes a single number as its argument, which it 

converts to a string ending in "cm". Thus, the Scheme expression (lcm 28 49) will evaluate to 

the number 196, and the expression ("lcm" 28) will evaluate to the string "28 cm". R functions 

whose names aren’t shadowed, such as cos, can be called either way, though there’s a slight 

difference in how the two cases are handled by apply: if the function it’s passed is an actual R 

function, it will call do.call with the parameter quote set to true, which will allow symbols to 

be passed to functions as arguments. However, because this can result in unpredictable behavior 

for some functions, calling an R function as a string will cause do.call to be called with quote 

set to false. As an example, (typeof (quote x)) will return the string "symbol", whereas 

("typeof" (quote x)) will either return the type of whatever variable is bound to x in the 

global R environment or throw an error if it’s not bound at all. 

4. Tail Call Optimization 

The basic idea behind tail call optimization is that if all function f has left to do is call function g 

and return the result, a combination of actions known as a tail call, then instead of making a new 

stack frame for g and adding it to the top of the stack, it’s more efficient to replace the stack 

frame for f with one for g and let it directly return its value to whatever called f, since all f was 

going to do was pass it on verbatim anyway (Sebesta 2012). The most common case, called tail 

recursion, is when f and g are the same function, but proper tail call optimization works just as 

well with functions calling each other in tail position. 

Tail call optimization has been an essential feature of Scheme since its inception (Sussman and 

Steele 1975). In addition to allowing more direct representations of recursive functions, it also 



allows the kind of looping that in most languages would require special syntactic forms like for 

or while to be accomplished through regular function calls (Abelson, Sussman, and Sussman 

1996). In fact, the do keyword in Scheme is basically just shorthand for defining and calling a 

simple tail-recursive function. 

4.1 Simple Tail Recursion Elimination 

The simplest type of tail call is one that a function makes to itself. This can almost always be 

eliminated by placing the body of the function inside a loop and replacing the tail call with a set 

of commands to reassign the function’s variables. This is an approach which is commonly used 

even in languages that don’t support full tail call optimization (Goodrich, Tamassia, and 

Goldwasser 2014). This approach was used by Peter Norvig in his second Python-based Lisp 

interpreter (Norvig 2010b), but it’s not without some rather severe downsides. Because 

everything has to remain with a single infinite loop, Norvig’s version of eval can’t call or be 

called by other functions (or rather, those calls won’t benefit from the optimization). This has 

two major effects: first, it’s impossible to define functions that evaluate specific syntactic forms 

and have the main eval function dispatch to them dynamically. Thus, adding a new form means 

directly editing the eval function, with the attendant risks of potentially breaking some part of it 

that was already working. Second, and perhaps more importantly, eval and apply can’t call 

each other; function application is handled directly by setting the environment and expression 

variables and letting the next loop process them. If we wanted to make apply available as a 

function within Norvig’s Lisp, we would need to define it separately, and any future changes to 

how function application worked would need to be made in both that function and within eval 

itself. 

4.2 The Trampoline Pattern 

Another approach to implementing tail call optimization in languages that don’t natively support 

it is the trampoline pattern, which works by rewriting recursive functions so that instead of 

calling themselves directly, they return functions that call them when used, essentially 

improvising a form of lazy evaluation (Michel 2018). These functions are then passed to a 

function that basically consists solely of a while loop that repeatedly overwrites the function’s 

argument with the value returned by calling it, stopping only when the result is something other 

than a function. This works on both recursive and non-recursive tail calls, but the extra overhead 

of each call having to create its own function makes it slow. 

4.3 The Analyzing Interpreter 

Fortunately, I had a solution. The analyzing interpreter described in section 4.1.7 of Structure 

and Interpretation of Computer Programs (Abelson, Sussman, and Sussman 1996) implements a 

form of just-in-time compilation by converting Scheme expressions into functions that each take 

an environment as their only argument and, when called, evaluate the expressions they were 

created from in that environment. The analysis process also only creates the function after it’s 

done as much evaluation as possible without knowing the environment in which they’re going to 

be run. For example, the function to analyze if statements starts by analyzing the predicate, 

consequent, and alternative clauses, then creates a function that, when called, calls the evaluated 

form of the predicate clause on the environment it was given, then uses the result to decide 

whether to call the analyzed form of the consequent or alternative clause. 



This means that calling the function does considerably less work than evaluating the expression 

from scratch would have. And since the analysis is only done once per expression, the savings 

become more pronounced the more times the same function is called, which means it’s 

particularly useful for iteration by tail-recursive functions. Thus, we have a way to convert 

expressions into functions that not only doesn’t slow everything down, but in fact improves 

performance. 

Another benefit of this approach is that since all analysis finishes before any evaluation begins, 

the analyze function doesn’t have to recurse along with the expressions it’s evaluating. 

Consider the following simple Scheme code, which I used during development to make sure my 

interpreter implemented tail call optimization properly: 

(define (iter n) 
  (if (< n 0) 
      'done 
      (iter (- n 1)))) 
(iter 9999) 

When processing the definition, eval would create a function whose body was the (if ...) 

statement above and whose environment was the environment in which define was called (in 

this case, the global environment). When evaluating the call to (iter 9999), a version of eval 

that wasn’t specifically written to allow tail calls would first evaluate the expression iter, 

determine that it was a procedure, evaluate its arguments one-by-one (in this case, the only one is 

9999), and then call apply with the procedure and its list of evaluated arguments. Next, apply 

would create an environment whose parent was the environment attached to iter, in which n is 

bound to the number 9999. It would then ask eval to evaluate the (if ...) expression in that 

environment, which would result in eval calling apply again, and so on. Obviously, these 

repeated calls would eat up stack space, resulting in an error, which is why eval would have to 

be written in a more convoluted fashion. 

Now consider how an analyzing interpreter would handle the same set of expressions. First, it 

would analyze the (define ...) expression and create a function that, when called with an 

environment, would pass it to the analyzed form of the procedure body and bind the result to the 

name iter in that environment. All of this, however it was done, would finish before any calls to 

iter were made. When evaluating the expression (iter 9999), all analyze would do is notice 

that iter is not a syntactic keyword, which means the expression should be treated as a function 

application. It would then create a function that, when passed an environment, looks up the value 

of iter in that environment and passes the result, along with a list consisting of the number 

9999, to apply, which then turns to the trampoline for actual execution. At that point, no further 

calls to analyze would be made, meaning that the total number of calls, and thus the potential 

maximum size of the stack, is completely unaffected by whatever value is passed to iter. Thus, 

analyze can be implemented without worrying about running out of stack space. While it’s 

theoretically possible for sufficiently deeply nested code to cause a stack overflow with 

analyze, you would pretty much have to be doing it on purpose, and it would probably be better 

practice to make the most deeply nested parts into their own procedures anyway. 

In short, this approach allows me to implement the core of my interpreter in whatever manner I 

see fit while still reaping the benefits of tail call optimization. The approach I ended up using 

was a data-directed one: when passed an expression that takes the form of a list whose first term 



is a symbol, analyze will check a table of analysis functions to see if there’s one registered to 

that symbol and, if so, pass the expression to it. If not, it will default to treating the expression as 

a function application, creating a function that, when passed an environment, will evaluate each 

term in that environment and pass the results to apply, with the first term as the procedure and 

the remaining terms as its arguments. Thus, to add a new syntactic keyword, one needs only 

write an analysis function for it and add it to the table, all without modifying any existing code. 

4.4 The Virtual Machine 

The functions created by the analyzing interpreter differ from those used in the standard 

trampoline pattern in two major ways: first, because functions are a valid type of return value in 

Scheme, simply testing whether or not a given value is a function is insufficient to tell whether or 

not it needs to be run again. To fix that, all functions created by analyze and its various sub-

functions are given the class thunk. It is named after an observation made during the 

development of ALGOL 60 that “most of the analysis of (‘thinking about’) the expression could 

be done at compile time; thus, at run time, the expression would already have been ‘thunk’ 

about” (Abelson, Sussman, and Sussman 1996). Rather than checking whether or not its variable 

is a function, each iteration of the while loop checks whether or not its class matches. Second, 

and more difficult to address, each thunk takes one argument rather than zero. 

To explain why this was an issue, it helps to take a closer look at the changes I had to make to 

the optimizing interpreter in order to keep it compatible with the trampoline pattern. The first 

two are fairly straightforward reflections of the way the pattern works. First, whenever a thunk 

would normally call another thunk in tail position, it returns it instead and allows the trampoline 

function (which has the name run() in my interpreter) to make the actual call. Second, because 

there’s no guarantee that any given thunk will immediately produce a return value, non-tail calls 

to other thunks also have to go through the trampoline. That is, to evaluate the code represented 

by the thunk proc in environment env, you would need to call run(proc,env) instead of just 

calling proc(env). 

The other side of the coin, and the one that required me to create a virtual machine, was the way 

the trampoline pattern itself had to be adjusted to work with the fact that each thunk required an 

environment in which to run. If a thunk wants to make a tail call to another thunk that will be 

executed in a different environment, it can’t simply return the thunk and let run do the rest, and 

it can’t call run itself because that would add another frame to the call stack, defeating the 

purpose of using the trampoline in the first place. The solution I came up with was to implement 

a virtual machine. 

The virtual machine used by my Scheme interpreter is essentially an extremely simple, extremely 

abstract computer. Thunks are analogous to instructions, directly invoking the run function is 

equivalent to using the call instruction. Environments are equivalent to stack frames, and the 

while loop inside the run function is the equivalent of a fetch-decode-execute loop. As 

mentioned above, executing a tail call is simply a matter of overwriting the current stack frame if 

necessary and jumping to the correct instruction. In this case, that means overwriting the 

environment used by the currently active instance of run and returning the next thunk. 

Implementation-wise, the virtual machine is an object consisting of a stack, the function setenv, 

and a modified version of the run function. When called, the first thing the modified run does is 



push the current setenv function onto the stack, then replace it with one that, when called, 

changes the environment that it (the currently active instance of run) uses. It then does the usual 

trampoline thing of repeatedly overwriting the variable proc with the return value of the call 

proc(env). However, this is enclosed in a call to tryCatch, with the command to restore the 

previous setenv function from the stack afterward as a finally term to guarantee that the stack 

is restored even if errors are encountered during evaluation. 

Similarly, because it’s frequently called during evaluation, apply needed to be reworked for 

trampoline support. In addition to a procedure and a list of values, it also takes a third parameter, 

active, which has a default value of false. If active is set to true, calling apply on a Scheme 

procedure will create a new environment and call run on that environment and the body of the 

procedure. If active is false, which is the default so that it works properly when called from 

within Scheme, it will instead call setenv on the newly extended environment and return the 

body of the procedure. In either case, it will still respond to being passed an R function of a 

string by calling do.call, because R functions don’t work with the trampoline directly anyway. 

5. The REPL 

While the interpreter includes functions for executing Scheme code directly within R, its primary 

interface is the read-eval-print loop, or REPL, which can be started by calling the function repl. 

When called, the first thing repl does is set the global option warn to 1, which causes warning 

messages to print immediately rather than waiting for the top-level function (which, in this case, 

is repl itself) to finish first. This way, warnings generated by the user’s actions will be shown in 

a timely fashion rather than remaining invisible until the REPL is exited. Next, repl uses R’s 

callCC function to capture a continuation that will exit the function, which it then uses to 

implement a function that will, when called, restore the warn option to its original value and use 

the previously captured continuation to cause repl to immediately exit and return the value that 

was passed to it. It then binds this function to the name quit in the global Scheme environment, 

thus creating a way for users to exit the REPL. 

With the setup out of the way, repl then enters the loop proper. The first thing it does is output 

the prompt ";;; RScheme input:", then call its input function. By default, this is a function 

that uses R’s readline function to get input directly from the user, allowing multi-line input by 

continuing to call readline until the total number of opening and closing parentheses the user 

has entered match. Once that happens, it passes the result to the lexer and parser, which convert 

it into a list of Scheme expressions. This is done within a call to tryCatch, enabling repl to 

detect any errors thrown by the lexer or parser, relay them to the user, and prompt for better 

input. 

Once it’s acquired input that can be parsed without triggering a syntax error, repl outputs the 

prompt ";;; RScheme output:" and evaluates the expression(s) in the list it got from the 

parser. Each evaluation is, again, done within a call to tryCatch so that repl can respond to 

errors by displaying them and continuing to run, rather than by immediately exiting. After 

evaluating each expression, it checks whether the result is either null or the special symbol 

#<void>. If not, it outputs the result and moves on to the next term. Once all terms have been 

evaluated and printed, it goes back to the top of the loop, outputting the ";;; RScheme input:" 

prompt and waiting for more user input. 



6. Scheme Commands 

By default, my Scheme interpreter includes 21 syntactic forms and over 150 predefined 

functions. While going through all of them would be somewhat excessive, the following should 

be enough to serve as a representative sample. 

6.1 Essential Syntax 

While my interpreter includes code to handle all syntactic forms directly, which I did partly for 

efficiency and partly because I felt I would learn more from implementing them that way, it’s 

entirely possible to define most of them in terms of each other, as will be shown with let later in 

this paper. The only forms that actually need to be derived directly are begin, define, set!, 

lambda, quote, define-macro, current-env, and either if or cond (either can be defined in 

terms of the other, but at least one of them needs to be written directly). I already discussed 

define, set!, and current-env in the section on environments, and lambda and define-macro 

will have their own sections below, but this is as good a place as any for a brief overview of 

begin and if. 

Scheme uses if to handle simple conditional statements. The expression is always in the form of 

either (if test consequent) or (if test consequent alternative). In either case, the if 

statement starts by evaluating test, then decides what to do next. If the result of evaluating test 

is true, it evaluates consequent and returns the result. If not, it either evaluates alternative 

and returns the result or, if alternative is missing, returns the placeholder symbol #<void>. 

Notably, test, consequent, and alternative are each single expressions; to create conditional 

blocks that do multiple things, the begin statement is needed. 

The way begin works is extremely simple: a begin expression consists of the symbol begin 

followed by any number of Scheme expressions, all of which are evaluated in order, with the 

value of the last one also being the value of the begin expression itself. This allows any arbitrary 

sequence of expressions to be treated as a single item, which is useful in forms like if and delay 

that take a limited number of parameters. In some variants of Scheme, begin can in fact be 

defined in terms of other commands. In fact, the section 7.3 or the R5RS specification gives two 

different ways to do exactly that (Kelsey, Clinger, and Rees 1998). However, those 

implementations differ from mine in that they don’t allow define commands inside of begin 

statements, which I chose to allow as a way that users could manually override the way my 

interpreter handles definitions within functions, which will be elaborated upon in the section 

below about variable bindings. 

6.2 Arithmetic Operators 

While I could theoretically have just used the arithmetic operators defined in R, the Scheme 

versions are able to handle arbitrary numbers of arguments, at least for the operators where either 

the transitive or associative property holds. For example, while converting (+ 1 2 3) to 1+2+3 

and (< 1 2 3) to (1<2)&(2<3) is perfectly intuitive, the same can’t be done with the expression 

(!= 1 2 2) because it’s not clear whether it would map to (1!=2)&(2!=2), which is false, or 

!((1==2)&(2==2)), which is true. Besides, I wanted to extend the way they work with R’s 

numeric vectors to apply to lists. For example, the Scheme expression (+ 10 '(1 2 3)) 

evaluates to the list (11 12 13) in my interpreter, much like the R expression 10+(1:3). I did 



the same thing with sqrt, which I had to modify anyway so that being passed a negative number 

would cause it to return a complex number rather than throwing an error, and with atan, which I 

had to modify so that if passed two values y and x, it would find the angle of the line passing 

through the point (x,y). 

6.3 Higher-order functions 

While arithmetic operators are implemented to automatically handle lists, other functions are not. 

However, Scheme already includes a way to handle this. The procedure map takes a function as 

its first argument, followed by one or more lists, and returns a list of the result of applying the 

function to the first term in each list, then to the second, and so on. For example, the Scheme 

expression (map abs '(1 -2 3 -4)) would evaluate to the list (1 2 3 4). Similarly, the 

functions andmap and ormap also take a function and a list or lists to iterate through, but instead 

of a list, they return a boolean value; andmap iterates through the list(s) until it either gets a false 

value, in which case it returns false, or runs out of terms, in which case it returns true. Likewise, 

ormap iterates until it gets a true value, in which case it returns true, or runs out of terms, in 

which case it returns false. For example, (andmap < '(1 4) '(2 3)) is false because 4 is not 

less than 3, and (ormap < '(1 4) "(2 3)) is true because 1 is less than 2. 

Other higher-order functions include for-each, which executes the same way as map but doesn’t 

return anything, filter, which takes a function and a list and returns only the values from the 

list for which the function didn’t return false, and fold-left and fold-right, which each take 

a two-argument function, initial value, and list of terms, and repeatedly replace the initial value 

with the result of calling the function with it and one term from the list. The difference is that 

fold-left uses the initial value as the function’s first argument and goes through the list from 

left to right, while fold-right uses the initial value as the function’s second argument and goes 

through the list from right to left. For example, (fold-right / 1 '(2 3 4)) evaluates to 

2/(3/(4/1)), and (fold-left / 1 '(2 3 4)) evaluates to ((1/2)/3)/4. 

6.4 Lambda expressions 

When using higher-order functions, there will be times when a function is needed only once. For 

example, suppose you have a large list of numbers and want to collect all the values from it that 

are between 5 and 15. You could define a function between-5-15 and use it with filter, but 

this seems somewhat wasteful as it’s unlikely that a function for testing whether or not a number 

is between 5 and 15 is something you’ll be reusing. For this type of situations, Scheme provides 

lambda expressions, also sometimes known as anonymous functions. If we want a collection of 

all the items in the list nums that are between 5 and 15, one approach would be to use the 

command (filter (lambda (n)(< 5 n 15)) nums). The interpreter also internally constructs 

lambda expressions when dealing with function definitions; (define (f x) (+ x 3)) is 

essentially the same as (define f (lambda (x) (+ x 3))), for example. It’s also possible to 

call lambda expressions directly; ((lambda (x y)(+ (* 2 x) y)) 5 7), for example, will 

evaluate to 31, though this is obviously less common as users could more easily enter the 

expression (+ (* 2 5) 7) in the first place. The one advantage of using a lambda expression in 

that context would be to bind the numbers to specific variables, but that’s where Scheme’s 

variable-binding forms come in. 



6.4 Variable Binding 

In practice, Scheme programmers will typically use some variety of let statement to bind 

variables instead of defining a lambda expression directly, though the two generally behave 

identically. In fact, in some versions of Scheme, the evaluator would internally convert the 

expression (let ((x 5)(y 7)) (+ (* 2 x) y)) into ((lambda (x y)(+ (* 2 x) y)) 5 

7) before evaluating it (Abelson, Sussman, and Sussman 1996). Not counting the “named let” 

form, which is more of a looping construct and will be discussed later, there are three varieties of 

let statements defined in the R5RS standard (Kelsey, Clinger, and Rees 1998), and a fourth, 

letrec*, was added by R6RS (Sperber et al. 2007). All of them are implemented in my version 

of Scheme. 

The most basic variable-binding form, let, evaluates the variables it’s binding simultaneously in 

its existing environment. For example, if the following code 

(let ((a 2) 
      (b (+ a 5))) 
  (* b 6)) 

were evaluated in an environment in which the variable a has the value 5, the result would be 60, 

not 42. This is because the expression (+ a 5) is evaluated in the environment in which the let 

statement was made, where a has the value 5. The second form, let*, behaves more intuitively 

by evaluating its variables sequentially: while it evaluates the value of its first variable in its own 

environment, it evaluates its second variable in an environment in which the binding for the first 

is already in place. Were there a third variable, it would be evaluated in an environment in which 

the first two were already bound, and so on. If the above code started with let* instead of let, it 

would indeed evaluate to 42. 

The third form, letrec, evaluates its variables simultaneously just like let, but it evaluates them 

in the environment in which they’ll be defined. This enables it to bind functions that can call 

themselves or each other. It also doesn’t allow variables to reference each other while being 

defined (functions don’t count, as they’re not actually evaluated until they’re called); if the code 

above started with letrec, it would throw an error because the expression (+ a 5) was being 

evaluated in an environment in which the value for a had not yet been determined. 

The final form, letrec*, attempts to combine the best of both worlds: variables are evaluated in 

the environment in which they’ll be bound, allowing for recursive functions, but they’re bound 

sequentially, so each variable can reference its predecessors. The code above would behave 

exactly the same if it started with letrec* as if it started with let*, but the following: 

(letrec* ((b (+ a 5)) 
          (a 2)) 
  (* b 6)) 

would throw an error, as b was trying to reference a definition of a that hadn’t been evaluated 

yet. By contrast, if the above started with let* (or, for that matter, let), it would simply 

evaluate to 60, as b would use the “old” binding for a. 

Inside of definitions, lambda expressions, and let blocks, uses of the define keyword are 

scanned out and treated as parts of an implicit letrec* form in which the rest of the expression 



will be evaluated. The standard approach is to treat them like bindings in a letrec block, but I 

feel processing them sequentially is a better idea, as following the line (define a 2) with 

(define b (+ a 5)) would naturally use the correct binding for a to set b to 7. At the same 

time, if the definitions are in the opposite order, it’s better to throw an error because b should be 

assumed to be trying to use the definition of a in its own environment, which hasn’t yet been 

executed, rather than whatever value a may have had outside the current context. If users want 

their define commands to be evaluated purely sequentially for some reason, they also have the 

option of placing them inside a begin statement, as the function that scans and isolates 

definitions will leave the contents of begin blocks alone. 

6.5 Looping Constructs 

While, as noted above, the existence of tail call optimization means that Scheme doesn’t actually 

need special structures to control program flow the way most languages do, it still has two of 

them. The one most similar to the types found in other languages is do, which is essentially a for 

loop that has an arbitrary number of control variables and a specific set of instructions to go 

through once it finishes executing. It takes the form 

(do ((var1 init1 next1) 
     (var2 init2 next2)) 
  (test end1 end2) 
  alt1 
  alt2) 

where the var terms are the names of the variables, the init terms are their initial values, and 

the next terms are evaluated at the end of each loop to determine what values their variables 

have the next time around. The loop starts by creating a new environment in which each var 

name is bound to the result of evaluating the corresponding init term, evaluating the test term 

in that environment. If it’s true, the end terms are evaluated one by one, with the result of the last 

one being the return value of the expression. If test is false, the alt terms are evaluated one by 

one, after which the next terms are evaluated, the results are bound to the corresponding var 

names in a new environment, and the loop starts over, evaluating the test expression in this new 

environment. There can be any number of var, init, next, end, and alt terms; I simply limited 

the above to two of each to save space. 

The more general form, known as the named let, is a variant of the standard let expression. 

Syntactically, it takes the form 

(let name ((var1 val1) 
           (var2 val2)) 
  body1 
  body2) 

The execution is also simple: a function that takes the var terms as parameters and executes the 

body terms in order is bound to name, then called with the val terms as its arguments. The body 

terms can call name just like any other function, allowing for both a more varied iterative 

structure than do (because different parts can call name with different values) and also for non-

tail recursion. 



6.6 Delayed Evaluation 

The delay command takes any other Scheme expression and returns an object that, when passed 

to force, will evaluate that expression and return the result. The result will also be stored, so 

subsequent calls to force with the same item will give the same result, but won’t actually run 

again. Take the following as an example: 

(define x (delay (begin (display "Hello!") 29)) 
(force x) 
(force x) 

The first (force x) will display the string "Hello!", then return the number 29. The second 

(force x) will return the number 29, but it won’t display anything because it’s just accessing 

the cached result from the first time rather than running it again. The difference is also visible if 

x is printed; before being forced, it prints as #<promise:(begin (display "Hello!") 29)>, 

and afterward it prints as #<promise!29>. 

6.7 Input and Output 

My Scheme interpreter includes basic file I/O through simulated “ports”, usable with the read, 

read-char, peek-char, display, write, and newline commands. The input commands can be 

called with either no arguments, in which case they’ll read input directly from the keyboard, or 

one argument, which must be an input port (actually implemented as a copy of the lexer that has 

been fed the contents of the file). Both read-char and peek-char read a single character of 

input, though read-char removes said character from the port while peek-char leaves it in 

place, and read reads a single Scheme expression (assembled with a call to lex.next). Input 

ports can be created in two ways: the Scheme function open-input-port takes a string as its 

argument and returns an input port for the contents of the file whose name matches that string, 

and the function call-with-input-port takes two arguments, the first of which is a string and 

the second of which is a function or procedure, which will be called with an input port matching 

the specified file as its only argument. 

Output functions are similar; newline takes either no arguments or one argument, and display 

and write each take either one or two arguments. In either case, the last argument will be an 

output port (actually implemented as a function that appends whatever it’s called with to the 

specified file), and omitting that argument will cause the function to display its output on-screen. 

The only difference between display and write is that when passed a single string to print, 

display will print it without quote marks and write will include them. Output ports can be 

created with either open-output-port or call-with-output-port, which work essentially the 

same way as their counterparts above. Optionally, open-output-port can be called with a 

second argument, which tells it whether or not to overwrite the file it opens. 

6.8 Error Handling 

The way my Scheme interpreter handles errors is the with-handlers special form, which is 

essentially a cross between the eponymous function in Racket (Flatt and PLT 2023a) and the 

tryCatch function in R. The syntax is 



(with-handlers handlers 
  term1 
  term2) 

where there are any number of term terms and handlers is a list of named items, containing 

some subset of warning, error, and finally. The values for warning and error are single-

argument functions, and the value for finally is a single Scheme expression. The term terms 

are executed in order, with the value of the last also being the value of the with-handlers 

expression. Should any warnings or errors arise in the process, the corresponding functions in the 

handlers list will be called if available, with their argument being the exception thrown by the 

system, and whatever the handler returns will become the value of the with-handlers 

expression. Either way, the finally term, if one is given, will be evaluated after everything else, 

but its value will not be returned. 

As an example, the following will display the message "You were warned" and return the 

number 7 if anything in body generates warnings, and it will display the message "Something 

went wrong" and return the number -19 if anything in body generates an error. Either way, it 

will display the message "This is inevitable" before returning. 

(with-handlers (#:warning (lambda (w) 
                            (display "You were warned") 
                            (newline) 
                            7) 
                #:error (lambda (e) 
                          (display "Something went wrong") 
                          (newline) 
                          -19) 
                #:finally (display "This is inevitable")) 
  body) 

If the error or warning terms are missing, the things they’re meant to handle will be treated as 

though they weren’t in a with-handlers block at all: warnings will be displayed as they arise 

but won’t stop evaluation, and errors will stop evaluation and display the corresponding error 

message. 

7. Interfacing with R 

Because apply is implemented as an R function (though it’s renamed to scm.apply because the 

name apply was already in use by an unrelated R function), it can be used along with R’s ... 

operator to create R functions that call arbitrary Scheme procedures, using the format 

function(...) { 
  scm.apply(procedure,list(...),TRUE) 
} 

where procedure is the Scheme procedure we want to call. This is the basis of the command 

export in my version of Scheme, which takes the name of a variable, looks up its value in the 

current Scheme environment, creates a function to call it using the format above if the value is a 

procedure, and binds the result to the variable’s name in the global R environment. For example, 

after executing the following two commands 



(define (square x)(* x x)) 
(export square) 

There will be a function called square in the global R environment, and calling square(5) in R 

will return the number 25, as expected. 

8. Macros 

Another use for the ability to call Scheme procedures directly from R is the creation of macros. 

At the base level, a macro is a Scheme procedure whose arguments are passed to it without being 

evaluated and whose return value is a different Scheme expression. They are a useful feature that 

allows the user to do things like emulate reference parameters. This can be easily implemented 

by creating a function in the form 

function(exp) { 
  scm.apply(macro,exp[-1],TRUE) 
} 

which, when passed the expression exp will apply the procedure macro to it and return the result. 

My interpreter actually keeps a table of macros, each of which is a function defined in the above 

form, and calls them whenever it’s passed an expression whose first term is a symbol that 

corresponds to an entry in the table. It actually uses a while loop to do this repeatedly, a process 

known as macro expansion, as it’s entirely possible for macros to be defined in terms of other 

macros. For example, an implementation of Scheme could use a macro to change do expressions 

into letrec expressions, another macro to turn letrec expressions into let expressions, and 

another to turn let expression into lambda expressions as shown below. 

If let wasn’t already defined in the interpreter, the non-named form would be easy to implement 

as a macro, converting a let expression into one that uses lambda to create a one-off function 

whose arguments are the variables we want to bind, then calls it with the corresponding values: 

(define-macro (let pairs . body) 
  (cons (cons 'lambda 
              (cons (map car pairs) body)) 
        (map cadr pairs))) 

Using this macro, the expression (let ((a 1)(b 2))(list a b (+ a b))) would be 

converted to ((lambda (a b)(list a b (+ a b))) 1 2). In addition to define-macro, my 

implementation of Scheme includes the function remove-macro, which deletes macros that the 

user no longer wants. For example, if a user were to enter the above definition of let and then 

run into problems because it doesn’t support named let statements, they could then use 

(remove-macro 'let) to remove it and revert to the interpreter’s default handling of the let 

command. To help with debugging, I also included the function test-macro, which takes a 

Scheme expression as its argument and returns the result of applying a macro to it if applicable. 

For example, I called (test-macro '(let ((a 1)(b 2))(list a b (+ a b)))) to get the 

result of using the let macro at the start of this paragraph. Note that since they’re both functions, 

remove-macro and test-macro need their arguments to be quoted. 



8.1 Quasiquotation 

While macros that put together new expressions using commands like cons and list are 

perfectly functional, they aren’t always intuitive. Fortunately, Scheme has a solution in the form 

of quasiquotation. As the name implies, quasiquotation is similar to quotation. The main 

difference is that within a quasiquote expression, any term starting with unquote is evaluated 

normally. For example, if x has a value of 7, then (quasiquote (x (unquote x))) will 

evaluate to the list (x 7). There is also an unquote-splicing term which is similar, except that 

its value must evaluate to a list, which will be spliced into the expression instead of left as-is. For 

example, if y is bound to the list (1 2 3), then (quasiquote (x (unquote y) z)) will 

evaluate to the list (x (1 2 3) z), but (quasiquote (x (unquote-splicing y) z)) will 

evaluate to the list (x 1 2 3 z). Each term also has its own reader macro: the backtick ` for 

quasiquote, the comma for unquote, and the symbol ,@ for unquote-splicing. Thus, if a is 

bound to the number 1 and b is bound to the list (2 3 4), the expression `(a ,a ,b ,@b b) 

will be equivalent to (quasiquote a (unquote a)(unquote b)(unquote-splicing b) b), 

which will evaluate to (a 1 (2 3 4) 2 3 4 b). 

Naturally, the “fill in the blank” nature of quasiquotation is particularly useful for macros. For 

example, using quasiquotation, the macro for let above can be redone in a much more intuitive 

fashion: 

(define-macro (let pairs . body) 
  `((lambda ,(map car pairs) 
      ,@body) 
    ,@(map cadr pairs))) 

8.2 Macro Hygiene 

One potential issue with the simple setup provided by define-macro is that if a macro uses any 

terms that weren’t in the expression passed to it, they can interfere with existing code. For 

example, take the following macro, which implements C-style for loops using named let: 

(define-macro (for head . body) 
  (let ((var (car head)) 
        (test (cadr head)) 
        (next (caddr head))) 
    `(let loop (,var) 
       (if ,test 
           (begin 
            ,@body 
            (loop ,next)))))) 

If the name loop is already used at some point within the body for something else, this will 

cause errors as the interpreter has no way to know which uses of loop refer to that and which 

were added by the macro. More modern versions of Scheme eschew the use of define-macro 

entirely in favor of the special forms syntax-rules (Kelsey, Clinger, and Rees 1998) and 

syntax-case (Sperber et al. 2007), which handle this issue automatically at the cost of being 

more complex to implement. There is, however, a simple fix that works with define-macro to 

solve this issue: the gensym procedure (Sitaram 1998). 



In simple terms, gensym takes a symbol and returns a new symbol that, while similar, hasn’t 

been used anywhere else in the program. Some implementations do this by checking the table 

Scheme uses to keep track of all existing symbols, but my interpreter uses R’s native symbol 

type, and I don’t know a user-accessible way to check R’s symbol table. Instead, my version of 

gensym converts the symbol it’s passed into a string, appends to it the string format of the current 

time in milliseconds, then appends a fifteen-digit random number given by R’s runif function. 

In order for gensym to return the same symbol twice, it would have to be execute twice within 

the same millisecond, and both would have to receive the same set of digits from runif, out of 

the 1015 equally likely possibilities. Using gensym, the above macro could be rewritten as 

(define-macro (for head . body) 
  (let ((var (car head)) 
        (test (cadr head)) 
        (next (caddr head)) 
        (loop (gensym 'loop))) 
    `(let ,loop (,var) 
       (if ,test 
           (begin 
            ,@body 
            (,loop ,next)))))) 

This would replace any uses of loop added by the macro with something like 

loop1682700590456305645938765956089, while leaving any that already existed unchanged. 

And since gensym never returns the same symbol twice, it also wouldn’t interfere with any loop 

symbols in use by other macros that followed this same methodology, which is why I picked this 

method over simply having it return a symbol like #;loop that the user couldn’t have entered 

directly. 

8.3 Reader Macros 

The table of reader macros can be accessed with the add.readermacro and rm.readermacro 

functions in R, or the add-reader-macro and remove-reader-macro functions in Scheme. 

Combined with define-macro, this can allow for some major customization to Scheme’s 

syntax, such as implementing the prefix form of the ++ operator from Java and C++, which can 

be done as follows: 

(define-macro (inc! x) 
  `(set! ,x (+ ,x 1))) 
(add-reader-macro '++ 'inc!) 
(define x 0) 
(list ++x ++x ++x) ;returns (1 2 3) 

Note that since add-reader-macro and remove-reader-macro are functions rather than 

syntactic forms, any symbols passed to them have to be quoted. 

9. Conclusion 

In this project, I created a Scheme interpreter that runs within R and is capable of both calling R 

functions directly and exporting Scheme procedures into functions that can be called from within 

R. The most educational part was probably the work I did to implement tail call optimization, 

both in figuring out that the functions generated by the analyzing interpreter could be used with 



the trampoline pattern and in the creation of the virtual machine to manage environments as 

stack frames. The main use for my project is to enable the creation of programs that benefit from 

both R’s massive library of third-party utilities and Scheme’s simple and extensible syntax. 
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