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I. Introduction

Every March, the National College Athletic

Association (NCAA) hosts a single-elimination

end of season tournament for Men’s College

Basketball called March Madness where the

tournament winner is crowned as the National

Champion. Using a selection committee, the

NCAA selects 68 teams to receive bids (se-

lected to participate) in this end of season

tournament. There are two types of bids the

committee uses. The first is an automatic bid.

32 teams will receive an automatic bid by win-

ning their respective conference’s tournament1

[1]. The remaining 36 bids are considered

at-large [2], where the selection committee

chooses the remaining best 36 teams across

all conferences after all conference tourna-

ments have concluded. These 68 teams are

then ranked and seeded from 1 to 16 by the

selection committee.

Once seeded, teams are placed in four geo-

graphical regions, namely East, West, South,

and Midwest. Each of the regions will have a

single play-in game [3]. The winner of each

play-in game will then enter the round of 64

where the win or go home format continues.

At the end of each round, exactly half of the

teams are eliminated. This pattern continues

until the last two teams play, where the win-

ner of the last game is deemed the National

Champion.

While the tournament is used to crown

the champion of college basketball, the tour-

nament offers the public an opportunity to

1A single elimination tournament comprised of teams in

the conference which takes place at the conclusion of regular

season play

compete in the bracket pool challenge where

it is estimated that around 50 million people

participate [4]. In a bracket pool, every entrant

must completely fill-out their bracket from the

Round of 64 to the National Championship 2

of their predicted outcomes prior to the start

of the round of 64. This lends us the question,

can Machine Learning successfully predict the

outcome of tournament matches and win a

bracket pool? In this paper, we explore the use

of three different Machine Learning algorithms

to answer this question.

II. Background information

In this section, we will provide details to help

understand the subject of our objective.

A. NCAA Tournament

The Division 1 NCAA basketball tourna-

ment, often referred to as ”March Madness,”

is a single-elimination tournament featuring 68

college basketball teams from universities and

colleges with the following format and struc-

ture:

• Selection Process: The tournament field

consists of 68 teams that are selected

through a combination of automatic bids

and at-large selections. The conference

champions are award automatic bids,

while the NCAA Selection Committee

chooses at-large selections based on a

team’s performances throughout the sea-

son, and various other factors.

• Seeding: Once the field is determined,

the Selection Committee seeds the teams

2Play-in games are typically omitted.
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from 1 to 16 within each of the four

regions. The Selection Committee deter-

mines the team’s seeding based on the

team’s strength, record, and other crite-

ria.

• Bracket: Each tournament in the bracket

format is organized by placing each team

in a specific spot within their respective re-

gion. The bracket consists of four regions:

East, West, Midwest, and South.

• Neutral site: Each tournament match-up

takes place at a neutral venue.

• First Four: The tournament begins with

the First Four, a series of play-in games

between the lowest-seeded teams (typi-

cally seeds 65-68). These games deter-

mine which teams advance to the first

round of the tournament.

• First Round: Following the First Four, the

tournament moves into the first round,

where the remaining 64 teams compete.

This round features 32 games, with each

winner advancing to the next round.

• Second Round (Round of 64): The win-

ners of the first-round games advance

to the second round, also known as the

Round of 64. In this round, 32 games are

played, with the winners moving on to the

third round.

• Third Round (Round of 32): The third

round consists of 16 games, with the win-

ners advancing to the Sweet 16.

• Regional Semifinals and Finals (Sweet 16

and Elite 8): The tournament then moves

to the regional semifinals (Sweet 16) and

finals (Elite 8). The remaining teams com-

pete in their respective regions, with the

winners advancing to the Final 4.

• Final 4: The winners of the four regional

finals advance to the Final 4, which is usu-

ally held at a predetermined neutral site.

Here, the remaining four teams compete

in two semifinal games.

• National Championship Game: The win-

ners of the semifinal games face off in

the National Championship Game to de-

termine the overall champion of the NCAA

Division 1 men’s basketball tournament.

B. Bracket Pool

In a bracket pool, a group of participants

create and fill out their brackets by selecting

the teams they predict will win each match-up

throughout the tournament, from the Round

of 64 through to the National Championship

Game. To determine a winner of a pool, par-

ticipants establish a scoring system before the

tournament begins. Points are awarded for

each correct prediction, with the number of

points typically increasing as the tournament

progresses. For example, correct predictions in

the early rounds might be worth fewer points

than correct predictions in later rounds.

III. Literature Review

The literature on Men’s College Basket-

ball has primarily concentrated on two areas.

The first of the two is the development of a

more defined seeding system, since the selec-

tion committee is the sole decider on at-large

bids. The second is the predicted outcomes of

NCAA Men’s basketball games. For this one,

we focused on the latter.

Kvam and Sokol [5] used a Markov chain

with transition probability derived using logistic

regression with the goal of determining the

probability that Team A is better than Team

B. In their paper, the transition probabilities for

every team were created using only match-ups

between two teams in a given season where the

teams had home and home series (i.e., Team

A plays Team B twice in a season, once at

home and once at Team B); using the margin

of victory with respect to the home team, a

factor was derived to represent a home court

advantage to account for neutral site match-

ups.

Beal, Norman, and Ramchurn [6] compared

9 different machine learning algorithms to pre-

dict the outcome of NFL games. A data set of

1280 games containing 85 input variables, their

comparison yielded two algorithms that outper-

formed predictions from odds makers, namely

the AdaBoost and Näıve Bayes algorithm. Al-

though both algorithms would successfully beat

the odds makers, the Näıve Bayes algorithm
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produced a better accuracy, recall and precision

over the AdaBoost algorithm.

Schwertman et al. [7] tested 11 different

ordinary least squares and logistic regression

models. They found that an ordinary least-

squares regression model to determine a teams

probability of winning the tournament would be

best. Also using linear regression, N.E.O and

Uzoma [8] proposed an hyrbrid model, feeding

the results of a linear regression model with 21

features to a K-Nearest Neighbor Algorithm.

IV. Data Collection and Data Set Creation

Prior to the initiation of our project, our

research led us to several potential data sets.

There, we found Lopez and Matthews[9] who

utilized efficiency statistics and Las Vegas

spread data to train a Machine learning al-

gorithm to predict the outcome of the round

of 64 most promising. Further backing this

approach, Kubatko et. al.[10] says efficiency

statistics can be used as a starting point in

comparing the two teams. While we originally

set out to replicate Lopez and Matthews’ ex-

periment, the parameters of our experiment

differed slightly. That is, during the time frame

one would predict their outcomes, Las Vegas

will only have spread data published for the

round of 64 as match-ups in succeeding rounds

are yet to be determined. Using spread data,

we create models that are incompatible with

the constraints of the questioned posed. Thus,

our data set will be composed of only efficiency

statistics.

A. Data Collection: Efficiency statistics

Once a subscription was purchased to

Kenpom[11], we were able to obtain pre-

tournament3 efficiency statistics from 2008-

20214 through a csv download for each year.

Each of these files contains

• Year: The year for which the statistics

were calculated

• TeamName: Team for which the statistics

are calculated for

3Efficiency Statistics without prior to the start of the

tournament
42020 did not have a tournament due to Covid-19

• Tempo: The team’s expected number of

possessions per 40 minutes

• Tempo Rank: A ranking of a team’s tempo

(out of approximately 360 teams)

• Adjusted Tempo: The team’s expected

number of possessions per 40 minutes

against an average team

• Adjusted Tempo Ranking: A ranking of a

team’s adjusted tempo

• Offensive Efficiency: A team’s expected

number of points scored per 100 posses-

sions

• Offensive Efficiency Ranking: A ranking of

a team’s Offensive Efficiency

• Adjusted Offensive Efficiency: A team’s

expected number of points scored per 100

possessions against an average team

• Defensive Efficiency: A team’s expected

points allowed per 100 possessions

• Defensive Efficiency Rank: A ranking of a

team’s Defensive Efficiency

• Adjusted Defensive Efficiency: A team’s

expected points allowed per 100 posses-

sions

• Adjusted Defensive Efficiency Rank: A

ranking of a team’s Adjusted Defensive

Efficiency

• Adjusted Efficiency Margin: The differ-

ence of a team’s Adjusted Offensive Ef-

ficiency and Adjusted Defensive Efficiency

• Adjusted Efficiency Margin Rank: A rank-

ing of a team’s Adjusted Efficiency Margin

• Seed: A team’s seeding in the NCAA tour-

nament

B. Data Collection: Historical match-ups

Next, we looked for historical match-up

data. Using SportsBookReviewOnline [12] we

were able to freely download an.xlsx file for

each season from 2008-2019 and 2021 con-

taining every match-up of a season. Here, the

fields that comprise the files are:

• Date: Date of the match-up

• rot: No information pertaining to this field

• VH: Indicates if the team found in a given

row is the visiting or home team

• Team: Team name of the given record
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• 1st: Total points score in the first half for

the team in a given match-up

• 2nd: Total points score in the second half

for the team in a given match-up

• Final: The total points score, sum of 1st

and 2nd, for the team in a given match-up

• Open: Gambling odds first publish,

Over/under total points if VH is visitor,

spread if VH is home

• Close: Gambling odds at beginning of

match-up, Over/under total points if VH

is visitor, spread if VH is home

• ML: Gambling odds, The odds of a team

winning the match-up

• 2h: Gambling odds for the second half of a

match-up, Over/under total points if VH

is visitor, spread if VH is home

C. Data Set Creation: Historical Match-ups

With both datasets, we first set out to

create an indicator for each historical match-

up. Although the field rot was not critical to

the analysis, we identified that it was incre-

mental. Increasing by a value of one in each

row. Leveraging this property, we created a

new field using modular arithmetic to find the

mod2 value of a rot of a given row, multiplying

the remainder by rot. As a result, a given row

would have a new field containing either the

rot or zero (0). We then review the rot of the

first row, of each file, to determine a cadence.

Where if the initial row != 0, the calculated

value is assigned to the succeeding row. On

the contrary, if the initial row = 0, we can

assign the value calculated in the subsequent

row to the current row. In doing so, we created

a indicator, pairing rows to identify the two

teams of a given match-up.

Continuing with our historical match-up

data set, we then took advantage of the Final

field which contains the total points scored for

the team found in the row of a given match-

up. Using the created indicator field, we found

the difference in the final score of each team.

A negative difference would signify a loss, and

a positive difference would signify a win. This

allowed us to classify a given record as an ’L’

for loss or ’W’ for win.

Following the creation of the indicator and

record classification, we turned our focus to

filtering our data to games played on or after

March 1st. The historical match-up data set

represented dates as integers. For example,

November 20th would be written as 1120 and

January 24th written as 124. Using this for-

mat, we preformed two integer comparisons.

First, we excluded records with a date greater

than 500, as the tournament takes place in

March (300) and April (400). Next, we ex-

cluded records less than or equal to 299. This

leaves us with all the match-ups that take place

on or after March 1st. Upon the filtering, we

removed the rot, VH, 1st, 2nd, Final, Open,

Close, ML, and 2H fields as they were not

involved in the analysis.

D. Data Set Creation: Efficiency statistics

The data obtained from Kenpom required

minimal adjustments. We merely needed to

remove the ranking fields, as they were not

included in the analysis.

E. Data Set Creation: File Merging

The next phase of our data set creation

was the merging of our two independent data

sets to associate a team and match-up clas-

sifications with their efficiency statistics for

the given season. To do so we aimed to use

Team and TeamName fields of the historical

match-up and efficiency data sets, respectfully.

This was seemingly straightforward with the

caveat that team names are often abbreviated.

These abbreviations can vary depending on the

author, and in our case varied drastically.

For this, we opted to utilize a dictionary,

creating a master key:value pair that would

map team names from our efficiency to the

team names found in our historical match-

up data. More precisely, a key value pair of

TeamName:Team. To begin iteratively adding

key value pairs, we walked through each file

for a given year, adding to our mapping of

teams that were able to map as is. Then, we

performed a string search of characters of all

team names found in our efficiency data. We

then reviewed the string search and identified
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a potential mapping. At the conclusion of the

string search, if any teams were unmapped

for a given year, we would manually review

and add the appropriate mapping. Prior to

adding mappings, we validated the mapping by

performing an internet search of a historical

match-up found in our data set.

Using the mapping, we added the Team

name from our historical data to our efficiency

data, for each year of data. In doing so, we

were able to join the data sets on the Team

name, creating a data set for each year.

F. Data Set Creation: Opposition Efficiency

With a single data set for each year, we

utilized the match-up indicator to pair teams

in a given match-up. Adding the efficiency

statistics of the given opponent.

G. Data Set Creation: Training and testing

sets

Given the format of the tournament, a typi-

cal training-testing split of 80-20 could prevent

the model from being trained on instances

from every round. To combat this, we opted

to view each year of the data as an instance

and randomly select two of the thirteen years

as testing sets. We selected two years by us-

ing a random number generator selecting a

number between 2008 and 2021. Resulting in

the selection of the 2010 and 2014 NCAA

tournaments. For testing purposes, these test

sets where not joined. After selecting which

years would comprise the test set, we combined

the remaining years into a single data set.

H. Data Set Creation: Tournament games

An important aspect of our models is that

each match takes place at a neutral venue,

eliminating the home court advantage of a

team [13]. The timeline of the model selection

and training portion of our project happened to

coincide with 2024 tournament and the time

frame that our data set is based on. To be

one with our project, we watched a handful of

match-ups. We then realized that our data set

contains instances that may skew our models.

That is, that not all match-ups on or after

March 1st take place at neutral venues, but

rather some teams are still playing in match-

ups at home or as a visitor. To prevent the

models from being skewed by home court

advantages, we removed all non-tournament

match-ups. This allowed our models to be

trained on neutral site tournament match-ups

only.

I. Adjusted Efficiency

Data obtained by Kenpom contained Ef-

ficiency and Adjusted Efficiency metrics. As

previously mentioned, adjusted is the expected

value of a metric against the average team, and

normalizing the metric towards the average of

a given year. Fig. 1 shows that AdjTempo has

fewer outliers due to normalization. Based on

this, we centered our analysis on the adjusted

efficiency metrics.

Fig. 1. Comparison of the distribution of Tempo and Ad-

justed Tempo

V. Data Set

The data set used to train our model con-

sisted of 11 years worth of NCAA tournament

match-ups between 2008 and 2021, excluding
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2020. Omitting the play-in match-ups to mirror

our objective, each tournament consists of 64

teams and a total of 63 match-ups, yielding

126 instances each year5, where the split in

classifications is even, 50%Win and 50% Lose.

In total, our models were trained on 1384

instances.

A given instance consists of the following

fields.

• Adjusted Tempo: A numerical field signi-

fying the number of possessions per game

against an average opponent. (AdjTempo)

• Adjusted Offensive Efficiency : A numer-

ical field signifying the number of points

scored per 100 possessions against an av-

erage opponent. (AdjOE)

• Adjusted Defensive Efficiency : A numer-

ical field signifying the number of points

allowed per 100 possessions against an

average opponent. (AdjDE)

• Adjusted Efficiency Margin: A numeri-

cal field signifying the difference of a

team’s Adjusted Offensive Efficiency and

Adjusted Defensive Efficiency. (AdjEM)

• Opponent Adjusted Tempo: The opposing

team’s Adjusted Tempo (OppAdjTempo)

• Opponent Adjusted Offensive Efficiency :

The opposing team’s Adjusted Offensive

Efficiency (OppAdjOE)

• Opponent Adjusted Defensive Efficiency :

The opposing team’s Adjusted Defensive

Efficiency (OppAdjDE)

• Opponent Adjusted Efficiency Margin:

The Adjusted Efficiency Margin of the

opposing team (OppAdjEM)

To prevent the models from being trained on

data identifiers, each observation of our data

set is centred around a singular team, and their

opponent for a given match-up.

VI. Prediction Scoring

Determining the winner of a pool is based

on the scoring which is determined prior to the

start of the tournament. To answer our ques-

tion we must also determine a scoring system

to judge the bracket our algorithms predicted.

5In 2021, Virginia Commonwealth forfeited their Round of

64 match-up to Oregon. This match-up is not included

While there is a number of ways to score a

bracket, we used a progressive scoring system.

For each correct prediction we received,

• Round of 64: 1 point

• Round of 32: 2 point

• Sweet 16: 3 point

• Elite 8: 4 point

• Final 4: 5 point

• National Championship: 6 point

VII. Model Bench Marking

While scoring helped us compare models and

their predictive power, we also need a com-

parison of a bracket that is not predicted by

machine learning algorithms. In doing so, we

can gain insight into how our models may per-

form against humans. To do this, we employed

two different control brackets. The first was

a bracket where the better seed always wins.

In this control, we are guaranteed a match-

up between two teams with the same seed. In

this event we will take the team, that is listed

on top from the bracket found on NCAA.com

[14] [15]. Our second control bracket can be

found in the White House archives[16] [17] and

will be the 2010 and 2014 NCAA brackets of

President Barack Obama.

By choosing these brackets as our control,

we can emulate potential brackets of com-

petitors. A our bracket where the higher seed

always wins represents someone with no knowl-

edge of college basketball [18], while Obama’s

bracket represents someone with moderate

knowledge of college basketball. Ideally, we

would include a college basketball expert in

the control group. However, college basketball

often creates and publishes multiple brackets,

introducing a selection bias in our control

group. Furthermore, the common bracket pool

in not inclusive of college basketball experts,

thus an unfair comparison to our objective.

VIII. Models

For our comparison, we evaluated three dif-

ferent machine learning algorithms.
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A. Logistic Regression

In 2014, Lopez and Matthews [9] combined

two logistic regression to win a Kaggle com-

petition [19] where contestants’ models were

evaluated on the logarithmic loss of their pre-

dicted results using probabilities of a given

Team A defeating Team B.

B. Classification Decision Tree

In 2012, Delen, Cogdell, and Kasap [20] used

the CRISP-DM methodology to compare three

different machine learning algorithms to predict

the outcome of NCAA college football games.

Using a data set of 244 bowl games from 2002-

2009 where each instance contained 28 depen-

dent variables, they found that a Classification

and Regression Tree best predicted the results

of bowl games.

C. Support Vector Machine

In 2016, Shen, Gao, Wen, and Magel [21]

used 3 different algorithms: A Bayesian Model,

Support Vector Machine (SVM), and a Ran-

dom Forrest. In the two tournaments used as

testing data, they found that the SVM pro-

duced the best results in one, and the Random

Forest performed better in the other. Given the

split, we chose the SVM because it produced

the highest accuracy for any given model. In

the year it performed the best it predicting

the winner of a given match-up with 79.4%

accuracy.

IX. Exploratory Data Analysis

To enhance our models’ predictive powers,

we evaluated the distribution of the data. Here,

we found two variables that could be trans-

formed to provide a more approximately normal

distribution.

Fig. 2 illustrates the distributions of our vari-

ables, showing the presence of outliers. Upon

this discovery, we reviewed our distributions

using a normal Q-Q plot.

Adjusted Offensive Efficiency (Fig. 3) dis-

played signs of concave downwards distribu-

tion. We began by applying data transforma-

tions to create a more linear QQ line. Although

Fig. 2. Comparison of the distribution of the AdjOE,AdjDE,

AdjTempo, and AdjEM

our right tail deviated from the QQ line, we

were able to improve the fit of the left tail by

squaring the data, creating a more normalized

distribution set.

The adjusted efficiency margin presented a

more complex distribution (Fig. 4). Although

concave down, squaring the data resulted in

a worse fit to the QQ line. When evaluating

the raw data, we found that the adjusted

efficiency margin contained negative values and

squaring would create skewness. By nominally

shifting the data by the doubling the absolute

minimum, we began applying factional powers.

9/5ths was chosen as it produced the best fit

to the QQ line.

Although adjusted defensive efficiency and

adjusted tempo both presented outliers and did

not have an approximately normal distribution,

our efforts to transform these variables were

unsuccessful.

Though our data set contains 8 variables,

4 of the 8 are merely 1 of the 4 adjusted

metrics rearranged. For example, in a match-



8

Fig. 3. Comparison of the Normal QQ plots of AdjOE and

AdjOE squared

up with team A playing team B, suppose that

team A has an AdjEM of 14.54 and Team B

an AdjEM of 21.2. Then the OppAdjEM for

team A is 21.2 and the OppAdjEM of team

B is 14.54. Therefore, the distribution of the

OppAdj metrics are the same distribution of

the Adj metrics. This fact allowed us to ignore

the distributions of the OppAdj metrics and

apply the transformations found for the Adj

metrics to the OppAdj.

To preserve our data set and prevent confu-

sion of future evaluation of models, we created

four new variables and remove the original data

prior to training. Namely,

• TransAdjEM: Transformed AdjEM

• TransOppAdjEM: Transformed OppAd-

jEM

• TransAdjOE: Transformed AdjOE

• TransOppAdjOE: Transformed OppAd-

Fig. 4. Normal QQ plot of the Adjusted Efficiency Margin

jOE

Following data transformations, we per-

formed review of the Variance Inflation Fac-

tor of our variables to test and remove any

co-linearity. We found that TransAdjOE and

AdjDE presented signs of co-linearity with

TransAdjEM and OppAdjEM and removed

them from the training set.

X. Model Selection

Prior to training our models, we needed to

determine if all data points were necessary for

our analysis. To perform this, we performed

a 5-fold Cross Validation[22] lasso regression

for logistic model and 5-fold Cross Validation

recursive feature elimination for our Decision

Tree and SVM. As 5-folds outperformed other

common folds.

A. Lasso Regression

When applying lasso regression to our prob-

lem we found only 4 features were necessary for

our logistic regression model, that TransAdjOE

and OppAdjDE had zero coefficients, leaving

us with the following equation:
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ŷ = −3.437427e − 06 + 0.0029AdjTempo
+− 0.0029OppAdjTempo + 0.0026AdjEM

+− 0.0026OppAdjEM
(1)

B. Recursive Feature Elimination

To utilize recursive feature elimination

(RFE), the algorithm required us to define a

metric to evaluate the data subsets and to

determine the best model, given the data set.

Given that we need to preform a binary clas-

sification, we chose to use Receiver Operator

Characteristics (ROC).

For our decision tree (Fig. 5), RFE turned

out to be the best model for only TransAdjEM

and TransOppAdjEM with a ROC of 0.6864.

Fig. 5. Trained Classification Tree

For our SVM, RFE was found to be the best

model to use the six variables. It produce an

ROC of 0.7801.

XI. Testing

To effectively analyze these algorithms and

their ability to predict brackets, we needed to

develop a testing structure that would recreate

the tournament, but in a data frame format.

Using the subset of the Round of 64 games, we

added a game key for each subsequent round.

That is, after we predict the outcome of the

round of 64 match-ups, we would be left with

32 teams and 16 plausible match-ups based on

the bracket of the given year. For example, in

2014 the winner of Michigan vs. Wofford would

be matched-up against the winner of Texas and

Arizona State. For these four teams, we added

a second round key of 16, indicating that the

winner of these match-ups would have played

in the 16th game of the Round of 32.

Given the format of our data set, we must

mention that we may have match-ups where

both teams are predicted to either win or lose.

Since match-ups in the tournament cannot

end in a tie, we must also implement a tie

breaker. For this, we extracted the probabilities

of a models predictions. In the event of a

tie, the team with the highest probability of

winning is chosen as the winner. And should

the probabilities be the same, the lower seed

will advance.

Additionally, we also had to add the results

for the subsequent rounds. By manually re-

viewing the tournament, we added the correct

result for each team for each subsequent round

after the Round of 64. For example, in 2010,

Georgia Tech defeated Oklahoma State in the

Round of 64. In turn, the results of all possible

subsequent matches for Oklahoma State would

be classified as a loss.

This strategy allowed us to effectively

match-up teams based on the bracket and

test our models using the match-ups it had

previously predicted.

XII. Results

In this section, we will simultaneously

present the results of our models for each

round and in order of the rounds in the tour-

nament. They are presented in chronological

order.

A. 2010 Tournament

After the initial phase of testing, our 3 mod-

els performed as expected on the basis of our

training. Fig. 6 shows the confusion matrices

of the results from each model for 2010 Round

of 64 match-ups. Here our logistic regression

model successfully predicted twenty-four of
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Fig. 6. Confusion Matrix of 2010 Round of 64 predictions

Logistic Regression, Decision Tree and SVM classifiers.

thirty-two match-ups in the 2010 first round.

The SVM model successfully predicted twenty-

one of thirty-two match-ups in the 2010 first

round. For our decision tree, we successfully

predicted 22 out of 32 match-ups in the 2010

first round.

TABLE I

2010 Round of 64 Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 75% 75% 25% 25%

Decision Tree 65.6% 65.6% 34.4% 34.4%

SVM 68.75% 68.75% 31.25% 31.25%

In addition to the accuracy of our models,

we want to keep track of how our bracket

performed. After the first round, the logistic

regression model produced a total of 24 points,

our decision tree had 22 points, and our SVM

had a score of 21 points.

In the Round of 32, we see that the logistic

regression model and the SVM successfully

predict 10 out of 16 winners correctly. How-

ever, the decision tree only predicted 8 of the

16 correct winners.

For scoring in this round, all correct pre-

dictions provide two points. Thus, the logistic

Fig. 7. Confusion Matrix of 2010 Round of 32 predictions

Logistic Regression, Decision Tree and SVM classifiers.

TABLE II

2010 2nd Round Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 68.75% 62.5% 25% 37.5%

Decision Tree 59.3% 50% 32.25% 50%

SVM 75% 62.5% 12.4% 37.5%

regression and SVM models receive 20 points,

and the decision tree receives 16. This gave us

the running total of logistic regression having

44, Decision Tree having 38 and the SVM

having 41 points.

In the 2010 Sweet 16, we found that the

SVM had the best predicting powers of this

round, predicting five of the eight correct win-

ners. Meanwhile, our Logistic Regression and

Decision Tree model both correctly predicted

four of eight winners correctly.

TABLE III

2010 Sweet 16 Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 62.5% 50% 25% 50%

Decision Tree 68.75% 50% 12.5% 50%

SVM 75% 62.5% 12.5% 37.5%

At the end of the round, our brackets will
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Fig. 8. Confusion Matrix of 2010 Sweet 16 predictions

Logistic Regression, Decision Tree and SVM classifiers.

have yielded 15 points for our SVM, bringing

their total to 56 points. 12 points were for both

our logistic regression and decision tree, giving

each a total of 56 and 50, respectively.

With the next round as the Elite 8, we

again see that our logistic regression and SVM

produce the same confusion matrix, correctly

predicting two out of four winners. The deci-

sion tree only predicted one of the four correct

winners.

TABLE IV

2010 Elite 8 Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 75% 50% 0% 50%

Decision Tree 50% 25% 25% 75%

SVM 75% 50% 0% 50%

For the round, the logistic regression and the

SVM model earned eight points, giving them

both a total of 64 points. The decision tree

earned 4 points and has a total of 54 points.

The results of the 2010 Final 4 were the

same for all three models, where each correctly

predicted one of the two winners (Fig. 10).

In the Final 4, yielding 5 points for each

correct prediction, each of the three models

Fig. 9. Confusion Matrix of 2010 Elite 8 predictions Logistic

Regression, Decision Tree and SVM classifiers.

Fig. 10. Confusion Matrix of 2010 Final 4 predictions

Logistic Regression, Decision Tree and SVM classifiers.

received 5 points, bringing their totals to 69,

69, and 59 for the Logistic Regression, SVM,

and Decision Tree, respectively.

In the final round of the 2010 tournament,
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TABLE V

2010 Final 4 Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 75% 50% 0% 50%

Decision Tree 75% 50% 0% 50%

SVM 75% 50% 0% 50%

we again see all three models perform the same

way. None of them predicted the correct winner

(Fig. 11).

Fig. 11. Confusion Matrix of 2010 National Championship

predictions Logistic Regression, Decision Tree and SVM

classifiers.

TABLE VI

2010 National Championship Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 0% 0% 100% 100%

Decision Tree 0% 0% 100% 100%

SVM 0% 0% 100% 100%

As a result, none of the models received

points for this round, leaving the Logistic Re-

gression and SVM model tied at 69 points, and

the decision tree with 59 points.

Tables VIII and IX provide a breakdown of

each model on how they fared in each round.

Additionally, after testing each round, we rolled

TABLE VII

2010 Correctly Predicted Wins by Round

Model Rd64 Rd32 S16 E8 F4 Final

Logistic 24 10 4 2 1 0

Decision Tree 22 8 4 1 1 0

SVM 21 10 5 2 1 0

TABLE VIII

2010 Score by Round

Model Rd64 Rd32 S16 E8 F4 Final

Logistic 24 20 12 8 5 0

Decision Tree 22 16 12 4 5 0

SVM 21 20 15 8 5 0

Fig. 12. Confusion Matrix of the combined 2010 predictions

Logistic Regression, Decision Tree and SVM classifiers.

up the results for each model to present a

singular confusion matrix (Fig. 12) for each

model.

B. 2014 Tournament

We will now present the results of the testing

from the 2014 Test set.

For the first round (Fig. 13), we see that

the Decision tree performed best, correctly pre-

dicting twenty-five of the thirty-two winners.

The logistic regression and SVM models both
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Fig. 13. Confusion Matrix of 2014 Round of 64 predictions

Logistic Regression, Decision Tree and SVM classifiers.

correctly predicted twenty-four of thirty-two

winners.

TABLE IX

2014 Round of 64 Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 75% 75% 25% 25%

Decision Tree 78.1% 78.1% 21.9% 21.9%

SVM 75% 75% 25% 25%

This gives the decision tree a total of 25

points, and the logistic regression and SVM

models a total of 24 points.

The 2014 Round of 32 (Fig. 14 and Table

X) saw a tie in performance, where all three

models successfully predicted the same number

of correct winners, ten out of sixteen.

TABLE X

2014 Round of 32 Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 68.75% 62.5% 25% 37.5%

Decision Tree 65.6% 62.5% 31.25% 37.5%

SVM 68.75% 62.5% 25% 37.5%

With each correct prediction receiving two

points, there were no changes in the stand-

Fig. 14. Confusion Matrix of 2014 Round of 32 predictions

Logistic Regression, Decision Tree and SVM classifiers.

ings of our brackets. Updating the points, the

Decision Tree had 35 points, and the Logistic

Regression and SVM had 34 points.

As a result, all three models received 20

points for the round. We got a total of 45,

44, and 44 points for the Decision Tree, SVM,

and Logistic Regression models, respectively.

Unlike 2010 where all three models saw a

TPR of at least 50%, the 2014 Sweet 16 (Fig.

15 and Table XI) the decision tree was the

only model with exactly 50% and our logistic

regression and SVM had a TPR of 25%. This

means that only two of the eight winning teams

were correctly predicted.

TABLE XI

2014 Sweet 16 Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 43.75% 25% 37.5% 75%

Decision Tree 68.75% 50% 12.5% 50%

SVM 43.75% 25% 37.5% 75%

Following the Sweet 16, the decision tree

widened the gap between itself and the other

two models, earning a total of 12 points in

the round. Our decision tree has a total of
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Fig. 15. Confusion Matrix of 2014 Sweet 16 predictions

Logistic Regression, Decision Tree and SVM classifiers.

57 points, and the logistic regression and SVM

totaling 50.

Fig. 16. Confusion Matrix of 2014 Elite 8 predictions Logistic

Regression, Decision Tree and SVM classifiers.

From Fig. 16, each of our 3 models correctly

predicted only one of the four actual winners.

This means that each model received 4 points

each, making our totals 61, 54, and 54 for the

Decision Tree, Logistic Regression and SVM

models, respectively.

TABLE XII

2014 Elite 8 Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 62.5% 25% 0% 75%

Decision Tree 50% 25% 25% 75%

SVM 62.5% 25% 0% 75%

In Fig. 17, we find that none of the models

produced any correct predictions. This means

that there are no points awarded. Furthermore,

since we did not have any correct predictions,

our bracket can no longer earn any points.

Fig. 17. Confusion Matrix of 2014 Final 4 predictions

Logistic Regression, Decision Tree and SVM classifiers.

TABLE XIII

2014 Final 4 Confusion Matrix Metric

Model Acc TPR FPR FNR

Logistic 50% 0% 0% 100%

Decision Tree 50% 0% 0% 100%

SVM 50% 0% 0% 100%
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For all intents and purposes, we will present

the testing results for the final round in Fig.

18.

Fig. 18. Confusion Matrix of 2014 National Championship

predictions Logistic Regression, Decision Tree and SVM

classifiers.

At the conclusion of the 2014 final round,

we found that our Decision tree performed the

best in terms of scoring earning 61 points, while

our Logistic Regression and SVM were tied at

54.

TABLE XIV

2014 Correctly Predicted Wins by Round

Model Rd64 Rd32 S16 E8 F4 Final

Logistic 24 10 2 1 0 0

Decision Tree 25 10 4 1 0 0

SVM 24 10 2 1 0 0

TABLE XV

2014 Score by Round

Model Rd64 Rd32 S16 E8 F4 Final

Logistic 24 20 6 4 0 0

Decision Tree 25 20 12 4 0 0

SVM 24 20 6 4 0 0

Table XIV and XV illustrate the number of

correct predictions and points for a model in

each round. Fig. 19 rolls up the confusion

matrices of each round to provide a single

source of results for each model for the 2014

season.

Fig. 19. Confusion Matrix of 2014 predictions for the

Logistic Regression, Decision Tree and SVM classifiers.

C. Ties

As mentioned in the Testing section, ties are

possible; therefore, we implemented a protocol

to resolve collisions in predictions. While ties

did occur, they were minimal and resolved using

the classification probabilities produced by the

model.

XIII. Model Comparison and Discussion

If we were to base our results on points

score, the 2010 season would see the Logistic

Regression and the SVM model tied (table

VIII). But the 2014 season would suggest that

the decision tree is the Superior model (table

XV). What we see here is that there is lit-

tle separation between the results of the first

two rounds of the tournament. From a point

perspective, these differences can be made up

in later rounds, which is exactly what we see

in 2010 with the logistic regression and SVM
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model. In the first round, the logistic regression

model correctly predicted three more teams

than the SVM model. This point gap was

closed when the SVM correctly predicted five

of the eight winners in the Sweet 16. After

that, each model correctly predicted the same

teams, making them inseparable.

Even though the decision tree was unable to

compete with the other two models, there is a

level of optimism with regards to its predicting

power. This is from the fact that, while it

did not predict the correct national champion,

it was able to predict the national champion

would make the final round. While the other

two models were able to accomplish this as

well, the decision tree under performed against

the other models in both the sweet 16 and elite

8.

In contrast, the 2014 data set suggested

that the decision tree was the superior model.

With little separation (Tables XIV and XV) in

the Round of 64 and Round of 32 between

the three models, the decision tree was the

only model that held its performance level in

the sweet 16 over the two years. After the

2014 Sweet 16, all models began to decline in

performance in 2010. At first, this was alarm-

ing. However, the 2014 tournament was more

of an anomaly [23] as the national champion

was a 7th seed. This was a year that saw two

teams seeded 7 or lower make the Final 4, and

aside from the 7th seed, we also had an 8th

seed. To add to the anomaly, this 8th seed

also made the national finals. From the NCAA

[24], the NCAA tournament has taken place,

at the time of the article, 38 times. Only in

three of those years has the winner not been

seeded 1, 2, 3, or 4. To further add to this, 7

and 8 seeds have only each made the national

championship a combined 5 times out. Having

anomalous testing data makes it difficult to

compare the models past the Round of 32. The

decision tree is able to correctly predict half of

the teams that made it to the Elite 8 in 2014.

We can see that model performance varied

based on testing years. Therefore, we aggre-

gated each round, combining the two years, as

more correct predictions in later rounds hold

more value than earlier.

TABLE XVI

Aggregated Correctly Predicted Wins by Round

Model Rd64 Rd32 S16 E8 F4 Final

Logistic 48 20 6 3 1 0

Decision Tree 47 18 8 2 1 0

SVM 45 20 7 3 1 0

TABLE XVII

Aggregated Score by Round

Model Rd64 Rd32 S16 E8 F4 Final

Logistic 48 40 18 12 5 0

Decision Tree 47 36 24 8 5 0

SVM 45 40 18 12 5 0

Tables XVI and XVII show a slight advantage

in the first round for the logistic regression

model. Similar to 2010, the Round of 32 shows

a tie between the logistic regression and SVM

model. The Sweet 16 shows the largest sepa-

ration in terms of points, where the Decision

Tree outperforms the other two models. How-

ever, in terms of correct predictions, the SVM

outperform the logistic regression model. After

the Sweet 16, we relied on the 2010 model

for analysis. That said, we found that each

model outperforms each other based on a given

round.

Straying away from a points perspective, and

focusing on the combination of both years,

Fig. 20 illustrates that the logistic regression

model correctly predicts more winners, but only

slightly compared to the Decision Tree and

SVM which have 76.

Fig. 20 shows that these three models have

approximately the same predicting power in

terms of predicting the correct winner. Pre-

dicting correct winners and winning a bracket

pool heavily relies one which round these win-

ners are predicted. Circling back to Fig. 12

and Fig. 19, we see that in 2010 our logistic

regression model correctly predicted 41 of the

63 match-ups ( 65%), the decision tree pre-

dicting 57% and the SVM predicting 61%

of the match-ups. Meanwhile, in 2014, the

decision tree performed the best, correctly pre-

dicting 63%. However, the logistic regression
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Fig. 20. Confusion Matrix of 2014 predictions for the

Logistic Regression, Decision Tree and SVM classifiers.

and SVM model fell in predicting power to

58%.

A. Benchmarking

For our objective, a model’s accuracy and

predicting power have limited explain-ability of

how a model may perform in a bracket pool. To

provide more insight, we have evaluated our

control brackets against, as previously men-

tioned, one where the higher seed always wins,

and the brackets created by former President

Barack Obama.

TABLE XVIII

Control Brackets Wins by Round

Ctrl Rd64 Rd32 S16 E8 F4 Final

Seed ’10 22 8 4 1 0 0

Obama ’10 26 9 4 0 0 0

Seed ’14 24 10 4 1 0 0

Obama ’14 23 9 4 1 0 0

Table XIX shows the brakedown by round

for our 2 control brackets. Similar to our mod-

els, we see that there are contrasting results

between years. In 2010, Obama outperformed

the Seed based selection method by 2 points,

TABLE XIX

Control Bracket Score by Round

Ctrl Rd64 Rd32 S16 E8 F4 Final

Seed ’10 22 16 12 4 0 0

Obama ’10 26 18 12 0 0 0

Seed ’14 24 20 12 4 0 0

Obama ’14 23 18 12 4 0 0

scoring a total of 56 points in comparison to

the 54 points from the seed based bracket.

And in 2014, we see the seed based predictions

scored a total of 60 points to the 57 points of

Obama’s bracket.

Furthering the contrast between years, Fig.

21 and Fig. 22 illustrate how well Obama and

the seed based brackets were able to predict in

their given years.

Fig. 21. Confusion Matrix of 2010 Control Brackets

While drilling down by year shows how our

control brackets can perform for a given year,

rolling the data up shows a different story.

In Fig. 23, we see the Obama’s bracket only

outperformed the seed based brackets by 2

points.

In fact, any metric derived from the confu-

sion matrices would further confirm the simi-

larities. That is, none of the 4 quadrants vary
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Fig. 22. Confusion Matrix of 2014 Control Brackets

Fig. 23. Confusion Matrix of Combined Years Control

Brackets

by more than 3.

B. Models Compared Benchmarks

We have previously shown how well our mod-

els have performed against each other. Now we

will compare them to our control brackets.

TABLE XX

Control and Model Brackets Aggregated Wins by Round

Ctrl Rd64 Rd32 S16 E8 F4 Final

Seed 46 17 8 2 0 0

Obama 49 18 8 1 0 0

Logistic 48 20 6 3 1 0

Decision Tree 47 18 8 2 1 0

SVM 45 20 7 3 1 0

By evaluating the correct predictions round

by round, it is clear that the models have

an advantage over the control groups in the

later rounds of the tournaments (Table XX).

This stems from the fact that in 2010, all

three models were able to successfully predict

one of the two national finalists, while our

control brackets were not. Adding to this, the

logistic regression and SVM models were more

successful in predicting Elite 8 winners, as both

predicted 3 winners in the two years compared

to the 2 and 1 correct predictions for the seed

based and Obama bracket.

Our control group, more specifically Obama,

was the most successful in predicting the

Round of 64. While we have seen from a

points perspective that a lack of predicting

power in the round of 64 can be overcome by

better predicting power in the later rounds, it

raises the question as to why the models did

not perform better in the round of 64? To

answer this, we looked at the data and found

that Obama is surprisingly good at predicting

upsets6. For example, In 2010, Obama cor-

rectly predicted 12th seeded Cornell to beat

a 5th seeded Wisconsin. After reviewing our

predictions, none of our models were able to

correctly pick this outcome.

XIV. Conclusions

When it comes to comparing our models to

our control groups, in 2010, both the logistic

regression and the SVM models scored a total

6A lower seed beating a higher seed
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of 69 points. This was largely assisted by their

abilities to correctly predict multiple winners

in the Elite 8 and one in the Final 4. The

control brackets were unable to predict winners

in these rounds. Thus, the best score produced

from our control for 2010 was from Obama’s

bracket, which produced a score of 56. In fact,

for 2010, the decision tree was also able to

outperform our control group.

As for 2014, our control group outperformed

their 2010 results. While the logistic regression

and SVM models performed worse, totaling 54

points. On the contrary, we saw our decision

tree slightly improve, producing 4 more correct

predictions, and increasing its points from 59

to 61. In comparison, Obama increased the

number of correct predictions from 35 to 39,

while our seed-based bracket decreased from

39 to 37. Here again, Obama produced the

best score from our control group with a total

of 57. And while besting our prior two best

models, it was unable to outperform our de-

cision tree.

From the results of our testing, it can be

difficult to determine definitively which model

best serves our original question. Though our

Logistic Regression and SVM models produced

the most points in 2010, they were unable to

reproduce similar results for 2014. Conversely,

our decision tree lacked in prediction power in

2010, but was the best model in 2014. Though

when we combine our testing set to get a

generalization of our models (Fig. 20), our

three models would perform relatively the same

over the long run. For the three models, the

number of correct predictions vary by 2, and

ranging in accuracy from 67.46% to 69.04%.

Although our models were able to produce

good accuracy, to be successful in a bracket

pool they should be judged on their hit rate.

A higher number of correctly predicted wins

will results in a higher scoring. The logistic

regression model was best in this category with

a 61.9% hit rate, with the SVM and decision

tree having a hit rate of 60.3%

Correct predictions have thus far been the

primary focus; however, we must also evaluate

our misclassified observations. Not only are

the number of correct predictions similar, our

misclassified observations are as well. Fig. 20

shows that our models have a high rate of mis-

classification. The logistic regression model has

the lowest number of misclassifications, incor-

rectly classifying 30.9% observations. Mean-

while, the SVM and Decision Tree have 31.7%

and 32.5% respectively.

From a generalization stance, the logistic

model presents the best traits of being a suc-

cessful model. Yet so does the Decision Tree

and the SVM. We speculate that this stems

from the data set. The data chosen was based

off of Lopez and Matthews where efficiency

metrics were used to assign probabilities for

the Round of 64 match-ups. Their results

were successful, and won a Kaggle competi-

tion based on their methodologies. However,

with the data set our SVM only tested at

67.46% falling well short of the accuracy pre-

sented by Shen, et al., which performed similar

experiment as ours. The difference between

our experiment extends past the quantity of

data, as their data set stems from 2008 to

2014, including the variables which extend past

the efficiency metrics to per game averages,

for example Free Throw Attempts Per Game.

These variables may be the cause of the drastic

change in accuracy.

An additional factor that may have caused

the stark difference in accuracy is the testing

set. Shen et al. used, at the time, the two

most recent tournaments, while we randomly

selected the years of 2010 and 2014. As previ-

ously mentioned, 2014 was an anomalous year,

and 2010 saw a 5 seed in the national champi-

onship, which has only happened 4 times in 84

tournaments, or 2.5% of the 162 teams to play

in the finals. In comparison, the years 2015 and

2016 both saw two 1 seeds play in the national

championship.

While the logistic regression model holds the

best predictive powers of the three tested, the

SVM and Decision Tree are close in compari-

son with the given data set, being within 2%

in both accuracy and hit rate. And based on

experiments tested by others, expanding upon

the variables may allow better predicting pow-
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ers. However, like these other experiments, we

may not have a single model that consistently

outperforms others.

XV. Next Steps

While our testing protocols could be refined,

the next immediate step would be to collect

more data. The conclusion is that our results

were less than desirable. As mentioned in our

closing, we have identified other research pa-

pers that uses a more verbose data set. To

accomplish this, we would need to develop a

web scrapper to expand upon the variables

used. This would be a necessary step as the

data is not readily available without purchase.

We would then repeat our analysis using the

expanded data before adjusting other facets of

our project.

XVI. Learning Points

In this project we were able to gain hands-

on experience deploying concepts learned

throughout the course load. After collecting

and cleaning our data, we were able to utilize

concepts from Exploratory Data analysis. By

visualizing the distributions, we recognized a

slight skewness in the data. To resolve this,

we applied transformations which normalized

the data. We then took the data and applied

methods learned in through our Data Mining

Seminar such has creating a Decision Tree to

generate a set of rules and Support Vector Ma-

chines to create hyper-planes to separate and

classify our observations. From our Statistical

Learning course, we applied Logistic Regres-

sion as well as recursive feature elimination to

simplify our models.

To apply these concepts it required self-

learning of libraries found in familiar program-

ming languages. To clean the data, we used

Python’s Pandas library. Here, we were able

to import the data from csv and xlsx formats

into a data frame. In turn, we were able to

manipulate these data types to extract the

necessary data for our analysis. Once cleaned,

we then explored the data in R, using qqnorm

to create normal QQ plots. We also were able

to remove variables that displayed co-linearity

using the Variance Inflation Factor function

from the car library. Prior to training our mod-

els, we utilized the caret library and its recursive

feature elimination function for our decision

tree and SVM models. This allowed us to

eliminate variables using cross-validation. For

feature selection on our Logistic Regression

model, we utilized Lasso regression to minimize

our coefficients.

To train, each model required a different

library. For the logistic regression model, we

used the glmnet. With the coefficients derived

from the Lasso Regression, we performed a

5-fold cross validation to train. The Decision

Tree was trained using the rpart library, al-

lowing us to tune our hyper-parameters to

maximize our training accuracy. Our SVM was

trained and the hyper-parameters were tuned

using the e1071 library.

Testing was accomplished using R’s predict

function. While we originally produced confu-

sion matrices using the caret library, we sought

the help of the ggplot library. This allowed for

better readability of our plots.

XVII. Lessons Learned

Many lessons have been learned throughout

this project. First, that this is a time con-

suming process and to expect malfunctions.

We thankfully experienced this early on in

our process where our computer unexpectedly

crashed, erasing our R code. Thankfully, this

occurred only in the Exploratory Data Analysis

phase. After that, we created a repository on

GitHub to store our files.

Training was also a troublesome point in our

process. While we had the resources necessary

to complete this analysis, we found that the

libraries used did not utilize our complete com-

puting powers. Namely, finding documentation

on how to access the computing power our

GPU could provide. To resolve this issue in the

future, we would move our analysis away from

R and fully into Python. During our search

for documentation, we found that Python has

libraries that contain the algorithms used in our

analysis. Furthermore, Python has the ability to

access our GPU.
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Automation was a sticking point in our code.

Since this was the first research project we

have performed, our code is more script based

rather than modular. Creating objects, meth-

ods and functions would have been useful to

create a cleaner understanding of our code

base.

XVIII. Thank you

Here, I would like to take a moment to say

thank you to the faculty and staff at Indi-

ana University South Bend. I have thoroughly

enjoyed my time learning from Professionals

dedicated to their craft and willingness to lift

students to their full learning potential.

I would also like to give a special thanks to

• Dr. Dana Vrajitoru for her tremendous

help, guidance and time as an advisor for

this project.

• Dr. Liqiang Zhang for his role as my advi-

sor in my Graduate studies.

• Dr. Peter Connor for his role as my advi-

sor through the majority of my Graduate

studies.
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