I101/B100
Problem Solving with Computers

By:

Dr. Hossein Hakimzadeh
Computer Science and Informatics
IU South Bend
I101/B100 – Problem Solving with Computers (4 cr.)

- Basic understanding of hardware (Memory, Processor, Instruction, Data)
- Basic data representation (text, numbers, images, sound, video)
- Structured Programming Techniques (sequence, repetition, condition)
- Problem Solving Techniques (top-down, bottom-up, object oriented)
- Critical thinking skills: (critical reading, listening, observing, interpreting, integrating, analyzing, developing alternative solutions, evaluating solutions, communicating coherent explanations to others, ability to make inference, ability to deduce.)
- Modularity, reusability
- Testing and debugging techniques
- Object-oriented concepts
Course Structure

- Two hours of lecture and two hours of closed laboratory per week
- active learning environment
- develop and refine critical thinking and problem-solving skills
- Computational Thinking skills are developed within the context of creating computer solutions to problems drawn from various domains such as health care, bioinformatics, robotics, games, business, education, the arts, or social science.
What is CS/INFO?

- [] https://clas.iusb.edu/computer-science-informatics/about/videos.html

- More videos available on our class website.
Pathways in Computer Science

- https://www.youtube.com/watch?v=RENVVVTNsVHg&feature=related
Course Structure

- The course is subdivided into two phases:
 - **Phase I**
 - You will be actively engaged in a series of problem-solving exercises. Each exercise will require approximately 2 or 3 class sessions. During these sessions, you (and your group members) will work jointly with me and our lab assistant to analyze and solve problems.
 - **Phase II**
 - The course will become more traditional. I will continue to provide new problems to the class; however, I will limit my contribution to the solution. Instead, I will act as a supervisor or coach who will help you focus your thinking and activities.
Problem Solving Structure

- **First Classroom Session:**
 - Problem Introduction (Instructor)
 - Short lecture-1
 - Brainstorming session (Group)
 - Homework-1 (Group)

- **Laboratory Session:**
 - Skill building exercises

- **Second Classroom Session:**
 - Presentation / Discussion (Students / Groups)
 - Short lecture-2
 - Solution Design (Group and Instructor)
 - Homework 2 (Students)

- **Third Classroom Session:**
 - Solution Implementation (Instructor)
Grading

Course grading is determined as follows:

<table>
<thead>
<tr>
<th>Course Activity</th>
<th>Percentage of overall grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Labs</td>
<td>20%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm Exams</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
Assignments

- The course includes approximately 6 assignments and 22 labs.

- Assignment and Labs must be completed and submitted via canvas.
Quizzes and Exams

- The course includes approximately one quiz per week. Quizzes are designed to keep you up to date with your reading and understanding of the material. They help you assess your understanding of the material.

- The course will also have 2 or 3 tests. The tests will be announced in advance.
Participation and Engagement

- This course employs active learning strategies and provides you with ample opportunity to engage with your classmates as you brainstorm, research, discuss, present, and pursue solutions to the problems posed.
How can I get help?

There are a number of different resources that can help you succeed in this course. These include:

- The course web site
- Lecture notes
- Laboratories
- On-campus tutoring
- Instructor’s regular office hours (Walk-in / Appointment)
- Chatroom interaction with other students and the instructor
- Sample code provided in class or in the lab
What will I need to begin the course?

- Need to **attend and participate in class and in the lab.**
- **Mathematical literacy.** (e.g., Knowledge of high school algebra.)
- **Computer literacy.** (basic use of the web, sending email with attachments, installing software, creating and navigating folders, creating a compressed file or folder)
Academic Integrity

- It is the responsibility of the student to know of the prohibited actions such as cheating, fabrication, plagiarism, academic, and personal misconduct, and thus, to avoid them.