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Abstract  As previously reported, Indiana University 
South Bend has deployed autonomous robots in their 
Computer Organization course to facilitate introducing 
computer science students to the basics of logic, embedded 
systems, and assembly language.  The robots help to provide 
effective, real-time feedback on program operation and to 
make assembly language less abstract.  As a part of their 
coursework students are required to program a sensor-
based traversal of a maze.  This paper details one solution to 
this problem employing a fuzzy logic controller to create 
linguistic rules.   
 
Index Terms  Fuzzy logic, pedagogy, robots, student 
projects 
. 

INTRODUCTION 

Assembly language programming in a computer science 
environment is often taught using abstract exercises to 
illustrate concepts and encourage student proficiency.  To 
augment this approach we have elected to provide hands-on, 
real-world experience to our students by introducing robots 
into our assembly language class.  Observing the physical 
action of robots can generate valuable feedback and have 
real-world consequences – robots hitting walls make 
students instantly aware of program errors, for example.  It 
also provides insight into the realities of physical machines 
such as motor control, sensor calibration, and noise.  To help 
provide a meaningful experience for our computer 
organization students, we reviewed the course with the 
following objectives in mind:  

 
 
• Expand the experience of our students in a manner 

that  enhances the student's insight, provides a 
hands-on, visual, environment for them to learn, 
and forms an integrated component for future 
classes. 

• Remove some of the abstraction inherent in the 
assembly language class.  Specifically, to help 
enhance the error detection environment. 

• Provide a kinesthetic aspect to our pedagogy. 
• Build student expertise early in their program that 

could lead to research projects and advanced 
classroom activities later in their program.  

Specifically, in this case, to build expertise to 
support later coursework in intelligent systems and 
robotics. 

 
As one component in meeting these objectives we, in 

cooperation with the Computer Science department, the 
Intelligent Systems Laboratory, and the University Center 
for Excellence in Teaching, designed a robotics laboratory to 
support the assembly language portion of the computer 
organization class as described in [1].   

The balance of this report describes one example project 
resulting from this environment.  Specifically, we describe 
the results of a student project developing an assembly 
language fuzzy engine, membership function creation, fuzzy 
controller,  and resulting robot behavior in a Linux-based 
environment.  We also describe subsequent software 
devlopment in C# under Windows, including graphical 
membership tuning, real-time display of sensor activation, 
and fuzzy controller system response.  Collectively these 
tools allow for robust controller development, assembly 
language support, and an environment suitable for effective 
classroom and public display. 

 

BACKGROUND 

Robots have long been recognized for their potential 
educational utility, with examples ranging from abstract, 
simulated, robots, such as Karel[2] and Turtle[3] for 
teaching programming and geometry respectively, to 
competitive events such as robotic soccer tournaments[4].  
As the cost of robotics hardware has decreased their 
migration into the classroom has accelerated [5, 6]. Driven 
by the combined goals for this class and the future research 
objectives, as well as software availability, we chose to use 
off-the-shelf, Khepera II, robots from K-Team[7].  

 

 
 

FIGURE 1 
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SIMULATED ROBOT DIAGRAM 
 

 
The K-Team Kephera II is a small, two-motor robot 

which uses differential wheel speed for steering.  Figure 1 
shows a functional diagram of the robot.  In addition to the 
two motors it includes a series of eight infrared sensors, six 
along the “front” and two in the “back” of the robot.  This 
robot also comes with an embedded system-call library, a 
variety of development tools, and the availability of several 
simulators. The embedded code in the Khepera robots 
includes a relatively simple, but adequate, command level 
interface which communicates with the host via a standard 
serial port.  This allows students to write their programs 
using the host instruction set (Intel Pentium in this case), 
send commands, and receive responses such as sensor 
values, motor speed and relative wheel position. 
 
We also chose to provide a Linux-based programming 
environment to our students by adapting and remastering the 
Knoppix Linux distribution [9].  Our custom distribution 
supplemented Knoppix with modified simulators for the 
Khepera, the interface library (including source code), 
manuals, and assembler documentation.  Collectively, this 
provides a complete development platform. 

 
The SIM Khepera simulator[8] includes source code in 

C, and provides a workable subset of the native robot 
command language.  It also has the ability to redirect input 
and output to the physical robot from the graphics display.  
Figure 2 shows the simulated Khepera robot in a maze 
environment and Figure 3 shows an actual Khepera in a 
physical maze.  To provide a seamless interface to the 
simulator and robots we modified the original simulator to 
more effectively communicate through a pair of Linux pipes, 
and we developed a small custom subroutine library callable 
from the student's assembly language programs.   

 

 
FIGURE 2 

SIMULATED ROBOT IN MAZE 
 

 

  

 
FIGURE 3 

KHEPERA ROBOT IN MAZE 
 
Assignments for the class range from initial C assignments 
to call the robot routines to assembly language assignments 
culminating in the robot traversing the maze. 
 

FUZZY CONTROLLER 

One approach to robot control, fuzzy logic, attempts to 
encapsulate important aspects of human decision making.  
By forming a representation tolerant of vague, imprecise, 
ambiguous, and perhaps missing information fuzzy logic 
enhances the ability to deal with real-world problems.  
Furthermore, by empirically modeling a system engineering 
experience and intuition can be incorporated into a final 
design.   

 
Typical fuzzy controller design [10] consists of: 

• Defining the control objectives and criteria 
• Determining the input and output relationships 
• Creating fuzzy membership functions, along with 

subsequent rules, to encapsulate a solution from 
intput to output. 

• Apply necessary input/output conditioning 
• Test, evaluate, and tune the resulting system. 
 
 

Figure 4 illustrates the conversion from sensor input to a 
fuzzy-linguistic value.  Given three fuzzy possibilities, ‘too 
close’, ‘too far’, and ‘just right’,  along with a sensor reading 
we can ascertain the degree to which the sensor reading 
belongs to each of these fuzzy terms.  Note that while Figure 
4 illustrates a triangular membership set, trapezoids and 
other shapes are also common. 
 
Once the inputs are mapped to their corresponding fuzzy sets 
the fuzzy attributes are used, expert system style, to trigger 
rules governing the consequent actions, in this case, of the 
robot.  For example, a series of rules for a robot may 
include: 
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• If left-sensor is too close and right sensor is too 
far then turn right. 

• If left sensor is just right and forward sensor is 
too far then drive straight. 

• If left sensor is too far and forward sensor is 
too far then turn left. 

• If forward sensor is close then turn right 
sharply. 

 

 
FIGURE 4 

FUZZY INPUT MEMBERSHIP 
 
The logical operators ‘and’, ‘or’, and ‘not’ are 

calculated as follows:  ‘and’ represents set intersection and is 
calculated as the minimum value, ‘or’ is calculated as the 
maximum value or the union of the sets, and ‘not’ finds the 
inverse of the set, calculated as 1.0-fitness. 

 

 
FIGURE 5 

FUZZY OUTPUT AND DEFUZZIFICATION 

 
 

Once inputs have been processed and rules applied, the 
resulting fuzzy actions must be mapped to real-world control 
outputs.  Figure 5 illustrates this process.  Here output is 
computed as the coordinate of the centroid of the aggregate 
area of the individual membership sets along the horizontal 
axis. 
 

  ASSEMBLY LANGUAGE IMPLEMENTATION 

Two implementations of the fuzzy robot controller were 
produced.  The first was written in assembly language for 
the Intel cpu architecture under the Linux operating system, 
the second in C# under Windows to provide a visually 
intuitive interface for membership set design and public 
demonstration. 

Figure 6 shows an excerpt of pseudo-assembly language 
program.  The actual program consists of approximately 
eight hundred lines of hand-coded assembly language.  In 
the assembly language program subroutine calls are 
structured with parameters pushed onto the stack.  Note that 
the code for pushing parameters has been edited from this 
example to conserve space and to illustrate the overall role 
of the controller.  In this code-fragment the ‘open_pipes’ 
routine establishes contact with the simulator or robot.  Once 
communication is established, a continous loop obtains 
sensor values, encodes them as fuzzy inputs, interprets them 
through the rule base to linguistic output members which are 
then converted to control outputs which are sent to the robot.  
The bulk of the remaining code implements the fuzzy engine 
itself. 

 
  
_start: 
 call open_pipes  
  
_main_loop: 
 
 # Read the sensor values from the robot 
 call _read_sensors 

 
 # Fuzzify the crisp inputs 
 call _fuzzify_input 
  
 # Reset the output fitness 
 call _reset_output 
  
 # Map input fitness values to output fitness values 
 call _logic_engine 
 
# Convert output fitness values to crisp motor values 
 call _defuzzify_output 
  
# Send motor commands to robot 
  call _move_robot 
  

 jmp _main_loop  
 

FIGURE 6 
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FUZZY CONTROLLER MAIN LOOP 
Membership sets were manually defined to allow the 

robot to detect and track walls, avoid barriers, and negotiate 
void spaces in it field of operation.   Using this controller,  
both the simulated robot and the actual Khepera successfully 
traversed a variety of maze configurations. 

 

ASSEMBLY LANGUAGE OBSERVATIONS 

While implementing the input fuzzification and output 
defuzzification in assembly language was tedious compared 
with the same task in a high level language,  the logic engine 
proved to be well suited to description in assembly language. 

The logic rules were defined in a type of psuedo-code 
using ‘and’, ‘or’, ‘not’ as operators and using the fuzzy input 
and output membership sets as parameters. With the addition 
of input, output and flow control operators, the assembly 
language logic engine simply had to evaluate these psuedo-
code expressions in order to map fuzzy inputs memberships 
to fuzzy output memberships. 

Other than storing the current membership fitness 
values from the input fuzzyfication, the only data structure 
needed for the logic engine is a stack to hold intermediate 
calculations. This is convenient under assembly language 
since the CPUs stack is immediately available as well as the 
nescesary stack operators. 

There were seven commands implemented by the logic 
rule interpreter: IN, OUT, AND, OR, NOT, DONE, and 
EXIT.  

• IN – reads the current fitness from an input 
membership set and places the value on the 
stack. 

• OUT – assigns the value on the top of the stack 
as the fitness value of an output membership 
set if it is greater than the existing fitness value 
for that set. 

• AND – performs the intersection operation by 
replacing the top two elements on the stack 
with the minimum element. 

• OR – performs the union operation by replace 
the top two elements on the stack with their 
maximum. 

• NOT – replaces the top value on the stack with 
its compliment. 

• DONE – pops the top value off the stack to 
prepare for the next rule 

• EXIT – signals the end of the logic rule 
definition and exits the interpreter. 

 
As an example the logic rule “If left-sensor is too close 
and right sensor is too far then turn right”, might be 
defined by the following fuzzy logic psuedo-code: 
 
 IN, left_sensor[ TOO_CLOSE ] 
 IN, right_sensor[ TOO_FAR ] 

 AND 
 OUT, left_wheel[ FWD ] 

OUT, right_wheel[ STOP ] 
DONE 
EXIT 

 
By utilizing the existing CPU stack and implementing 

the logic engine as an psuedo-code interpreter, the assembly 
language version is capable of handling arbitrarily 
complicated fuzzy rules composed of the simple logical 
operators provided. 

C#  IMPLEMENTATION 

While the assembly language programming was the 
original focus of the project, ultimately we felt that a more 
polished user interface was desirable for membership set 
design, fuzzy rule definition, and controller response 
monitoring.  To provide these facilities the fuzzy controller 
was reimplemented in C# under Windows.   

Figures 7 through 10 illustrate the capabilities of the 
resulting software. Specifically, Figure 7 illustrates user 
interface for membership defination, in this case ‘near’.    
Figure 8 illustrates the interface for defining the actual fuzzy 
rules.  Figure 9 profiles the output response with respect to a 
series of simulated inputs. Finally, real-time monitoring of 
the system is also implemented as illustrated in 10 which 
shows the robot sensor input values.   

Since the Khepera simulator was operating system 
specific, the C# program controls the robot directly. Again, 
the robot was successful at navigating the maze using a 
controller specified with this interface. 

 
FIGURE 7 

KHEPERA SENSOR RESPONSE 
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SUMMARY 

To summarize, we have developed a student-centric 
development environment for teaching assembly language 
programming.  As one illustration of its potential we profiled 
a project implementing a fuzzy-logic engine and controller, 
along with a subsequent implementation in the C# 
programming language.  Together these projects help to 
illustrate the viability of a robot-enhanced environment for 
assembly language programming. 

 
 
  
 

 
FIGURE 8 

FUZZY RULE DEFINITION 
 

 
FIGURE 9 

LEFT WHEEL OUTPUT PROFILE 
 

 
FIGURE 10 

KHEPERA SENSOR RESPONSE 
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