
FUZZY LOGIC CONTROL FOR ROBOT MAZE TRAVERSAL: AN
UNDERGRADUATE CASE STUDY

James Wolfer1, Chad A. George2

1 James Wolfer, Computer Science, Indiana University South Bend, South Bend, IN, USA,jwolfer@iusb.edu
2 Chad A. George, Computer Science, Indiana University South Bend, South Bend, IN, USA,cgeorge@cs.iusb.edu

Abstract  As previously reported, Indiana University
South Bend has deployed autonomous robots in their
Computer Organization course to facilitate introducing
computer science students to the basics of logic, embedded
systems, and assembly language. The robots help to provide
effective, real-time feedback on program operation and to
make assembly language less abstract. As a part of their
coursework students are required to program a sensor-
based traversal of a maze. This paper details one solution to
this problem employing a fuzzy logic controller to create
linguistic rules.

Index Terms  Fuzzy logic, pedagogy, robots, student
projects
.

INTRODUCTION

Assembly language programming in a computer science
environment is often taught using abstract exercises to
illustrate concepts and encourage student proficiency. To
augment this approach we have elected to provide hands-on,
real-world experience to our students by introducing robots
into our assembly language class. Observing the physical
action of robots can generate valuable feedback and have
real-world consequences – robots hitting walls make
students instantly aware of program errors, for example. It
also provides insight into the realities of physical machines
such as motor control, sensor calibration, and noise. To help
provide a meaningful experience for our computer
organization students, we reviewed the course with the
following objectives in mind:

• Expand the experience of our students in a manner

that enhances the student's insight, provides a
hands-on, visual, environment for them to learn,
and forms an integrated component for future
classes.

• Remove some of the abstraction inherent in the
assembly language class. Specifically, to help
enhance the error detection environment.

• Provide a kinesthetic aspect to our pedagogy.
• Build student expertise early in their program that

could lead to research projects and advanced
classroom activities later in their program.

Specifically, in this case, to build expertise to
support later coursework in intelligent systems and
robotics.

As one component in meeting these objectives we, in

cooperation with the Computer Science department, the
Intelligent Systems Laboratory, and the University Center
for Excellence in Teaching, designed a robotics laboratory to
support the assembly language portion of the computer
organization class as described in [1].

The balance of this report describes one example project
resulting from this environment. Specifically, we describe
the results of a student project developing an assembly
language fuzzy engine, membership function creation, fuzzy
controller, and resulting robot behavior in a Linux-based
environment. We also describe subsequent software
devlopment in C# under Windows, including graphical
membership tuning, real-time display of sensor activation,
and fuzzy controller system response. Collectively these
tools allow for robust controller development, assembly
language support, and an environment suitable for effective
classroom and public display.

BACKGROUND

Robots have long been recognized for their potential
educational utility, with examples ranging from abstract,
simulated, robots, such as Karel[2] and Turtle[3] for
teaching programming and geometry respectively, to
competitive events such as robotic soccer tournaments[4].
As the cost of robotics hardware has decreased their
migration into the classroom has accelerated [5, 6]. Driven
by the combined goals for this class and the future research
objectives, as well as software availability, we chose to use
off-the-shelf, Khepera II, robots from K-Team[7].

FIGURE 1

©2006 WCCSETE March 19 - 22, 2006, São Paulo, BRAZIL
World Congress on Computer Science, Engineering and Technology Education

46

SIMULATED ROBOT DIAGRAM

The K-Team Kephera II is a small, two-motor robot

which uses differential wheel speed for steering. Figure 1
shows a functional diagram of the robot. In addition to the
two motors it includes a series of eight infrared sensors, six
along the “front” and two in the “back” of the robot. This
robot also comes with an embedded system-call library, a
variety of development tools, and the availability of several
simulators. The embedded code in the Khepera robots
includes a relatively simple, but adequate, command level
interface which communicates with the host via a standard
serial port. This allows students to write their programs
using the host instruction set (Intel Pentium in this case),
send commands, and receive responses such as sensor
values, motor speed and relative wheel position.

We also chose to provide a Linux-based programming
environment to our students by adapting and remastering the
Knoppix Linux distribution [9]. Our custom distribution
supplemented Knoppix with modified simulators for the
Khepera, the interface library (including source code),
manuals, and assembler documentation. Collectively, this
provides a complete development platform.

The SIM Khepera simulator[8] includes source code in

C, and provides a workable subset of the native robot
command language. It also has the ability to redirect input
and output to the physical robot from the graphics display.
Figure 2 shows the simulated Khepera robot in a maze
environment and Figure 3 shows an actual Khepera in a
physical maze. To provide a seamless interface to the
simulator and robots we modified the original simulator to
more effectively communicate through a pair of Linux pipes,
and we developed a small custom subroutine library callable
from the student's assembly language programs.

FIGURE 2

SIMULATED ROBOT IN MAZE

FIGURE 3

KHEPERA ROBOT IN MAZE

Assignments for the class range from initial C assignments
to call the robot routines to assembly language assignments
culminating in the robot traversing the maze.

FUZZY CONTROLLER

One approach to robot control, fuzzy logic, attempts to
encapsulate important aspects of human decision making.
By forming a representation tolerant of vague, imprecise,
ambiguous, and perhaps missing information fuzzy logic
enhances the ability to deal with real-world problems.
Furthermore, by empirically modeling a system engineering
experience and intuition can be incorporated into a final
design.

Typical fuzzy controller design [10] consists of:

• Defining the control objectives and criteria
• Determining the input and output relationships
• Creating fuzzy membership functions, along with

subsequent rules, to encapsulate a solution from
intput to output.

• Apply necessary input/output conditioning
• Test, evaluate, and tune the resulting system.

Figure 4 illustrates the conversion from sensor input to a
fuzzy-linguistic value. Given three fuzzy possibilities, ‘too
close’, ‘too far’, and ‘just right’, along with a sensor reading
we can ascertain the degree to which the sensor reading
belongs to each of these fuzzy terms. Note that while Figure
4 illustrates a triangular membership set, trapezoids and
other shapes are also common.

Once the inputs are mapped to their corresponding fuzzy sets
the fuzzy attributes are used, expert system style, to trigger
rules governing the consequent actions, in this case, of the
robot. For example, a series of rules for a robot may
include:

©2006 WCCSETE March 19 - 22, 2006, São Paulo, BRAZIL
World Congress on Computer Science, Engineering and Technology Education

47

• If left-sensor is too close and right sensor is too
far then turn right.

• If left sensor is just right and forward sensor is
too far then drive straight.

• If left sensor is too far and forward sensor is
too far then turn left.

• If forward sensor is close then turn right
sharply.

FIGURE 4

FUZZY INPUT MEMBERSHIP

The logical operators ‘and’, ‘or’, and ‘not’ are

calculated as follows: ‘and’ represents set intersection and is
calculated as the minimum value, ‘or’ is calculated as the
maximum value or the union of the sets, and ‘not’ finds the
inverse of the set, calculated as 1.0-fitness.

FIGURE 5

FUZZY OUTPUT AND DEFUZZIFICATION

Once inputs have been processed and rules applied, the
resulting fuzzy actions must be mapped to real-world control
outputs. Figure 5 illustrates this process. Here output is
computed as the coordinate of the centroid of the aggregate
area of the individual membership sets along the horizontal
axis.

 ASSEMBLY LANGUAGE IMPLEMENTATION

Two implementations of the fuzzy robot controller were
produced. The first was written in assembly language for
the Intel cpu architecture under the Linux operating system,
the second in C# under Windows to provide a visually
intuitive interface for membership set design and public
demonstration.

Figure 6 shows an excerpt of pseudo-assembly language
program. The actual program consists of approximately
eight hundred lines of hand-coded assembly language. In
the assembly language program subroutine calls are
structured with parameters pushed onto the stack. Note that
the code for pushing parameters has been edited from this
example to conserve space and to illustrate the overall role
of the controller. In this code-fragment the ‘open_pipes’
routine establishes contact with the simulator or robot. Once
communication is established, a continous loop obtains
sensor values, encodes them as fuzzy inputs, interprets them
through the rule base to linguistic output members which are
then converted to control outputs which are sent to the robot.
The bulk of the remaining code implements the fuzzy engine
itself.

_start:
 call open_pipes

_main_loop:

 # Read the sensor values from the robot
 call _read_sensors

 # Fuzzify the crisp inputs
 call _fuzzify_input

 # Reset the output fitness
 call _reset_output

 # Map input fitness values to output fitness values
 call _logic_engine

Convert output fitness values to crisp motor values
 call _defuzzify_output

Send motor commands to robot
 call _move_robot

 jmp _main_loop

FIGURE 6

©2006 WCCSETE March 19 - 22, 2006, São Paulo, BRAZIL
World Congress on Computer Science, Engineering and Technology Education

48

FUZZY CONTROLLER MAIN LOOP
Membership sets were manually defined to allow the

robot to detect and track walls, avoid barriers, and negotiate
void spaces in it field of operation. Using this controller,
both the simulated robot and the actual Khepera successfully
traversed a variety of maze configurations.

ASSEMBLY LANGUAGE OBSERVATIONS

While implementing the input fuzzification and output
defuzzification in assembly language was tedious compared
with the same task in a high level language, the logic engine
proved to be well suited to description in assembly language.

The logic rules were defined in a type of psuedo-code
using ‘and’, ‘or’, ‘not’ as operators and using the fuzzy input
and output membership sets as parameters. With the addition
of input, output and flow control operators, the assembly
language logic engine simply had to evaluate these psuedo-
code expressions in order to map fuzzy inputs memberships
to fuzzy output memberships.

Other than storing the current membership fitness
values from the input fuzzyfication, the only data structure
needed for the logic engine is a stack to hold intermediate
calculations. This is convenient under assembly language
since the CPUs stack is immediately available as well as the
nescesary stack operators.

There were seven commands implemented by the logic
rule interpreter: IN, OUT, AND, OR, NOT, DONE, and
EXIT.

• IN – reads the current fitness from an input
membership set and places the value on the
stack.

• OUT – assigns the value on the top of the stack
as the fitness value of an output membership
set if it is greater than the existing fitness value
for that set.

• AND – performs the intersection operation by
replacing the top two elements on the stack
with the minimum element.

• OR – performs the union operation by replace
the top two elements on the stack with their
maximum.

• NOT – replaces the top value on the stack with
its compliment.

• DONE – pops the top value off the stack to
prepare for the next rule

• EXIT – signals the end of the logic rule
definition and exits the interpreter.

As an example the logic rule “If left-sensor is too close
and right sensor is too far then turn right”, might be
defined by the following fuzzy logic psuedo-code:

 IN, left_sensor[TOO_CLOSE]
 IN, right_sensor[TOO_FAR]

 AND
 OUT, left_wheel[FWD]

OUT, right_wheel[STOP]
DONE
EXIT

By utilizing the existing CPU stack and implementing

the logic engine as an psuedo-code interpreter, the assembly
language version is capable of handling arbitrarily
complicated fuzzy rules composed of the simple logical
operators provided.

C# IMPLEMENTATION

While the assembly language programming was the
original focus of the project, ultimately we felt that a more
polished user interface was desirable for membership set
design, fuzzy rule definition, and controller response
monitoring. To provide these facilities the fuzzy controller
was reimplemented in C# under Windows.

Figures 7 through 10 illustrate the capabilities of the
resulting software. Specifically, Figure 7 illustrates user
interface for membership defination, in this case ‘near’.
Figure 8 illustrates the interface for defining the actual fuzzy
rules. Figure 9 profiles the output response with respect to a
series of simulated inputs. Finally, real-time monitoring of
the system is also implemented as illustrated in 10 which
shows the robot sensor input values.

Since the Khepera simulator was operating system
specific, the C# program controls the robot directly. Again,
the robot was successful at navigating the maze using a
controller specified with this interface.

FIGURE 7

KHEPERA SENSOR RESPONSE

©2006 WCCSETE March 19 - 22, 2006, São Paulo, BRAZIL
World Congress on Computer Science, Engineering and Technology Education

49

SUMMARY

To summarize, we have developed a student-centric
development environment for teaching assembly language
programming. As one illustration of its potential we profiled
a project implementing a fuzzy-logic engine and controller,
along with a subsequent implementation in the C#
programming language. Together these projects help to
illustrate the viability of a robot-enhanced environment for
assembly language programming.

FIGURE 8

FUZZY RULE DEFINITION

FIGURE 9

LEFT WHEEL OUTPUT PROFILE

FIGURE 10

KHEPERA SENSOR RESPONSE

REFERENCES

[1] Wolfer, J & Rababaah, H. R. A., “Creating a Hands-On Robot

Environment for Teaching Assembly Language Programming”,
Global Conference on Engineering and Technology Education, 2005

[2] Pattic R.E., Karel the Robot: a gentle introduction to the art of
programming, 2nd edition. Wiley, 1994

[3] Abelson H. and diSessa A., Turtle geometry: the computer as a
medium for exploring mathematics. MIT Press, 1996

[4] Amirijoo M., Tesanovic A., and Nadjm-Tehrani S., “Raising
motivation in real-time laboratories: the soccer scenario” in SIGCSE
Technical Symposium on Computer Sciences Education, pp. 265-269,
2004.

[5] Epp E.C., “Robot control and embedded systems on inexpensive
linux platforms workshop,” in SIGCSE Technical Symposium on
Computer Science Education, p. 505, 2004

[6] Fagin B. and Merkle L., “Measuring the effectiveness of robots
in teaching computer science,” in SIGCSE Technical Symposium on
Computer Science Education, PP. 307-311, 2003.

[7] K-Team Khepera Robots, http://www.k-team.com, accessed
09/06/05.

[8] Michel O., “Khepera Simulator package version 2.0: Freeware
mobile robot simulator written at the university of nice Sophia-
Antipolis by Olivier Michel. Downloadable from the world wide web.
http://diwww.epfl.ch/lami/team/michel/khep-sim, accessed 09/06/05.

[9] Knoppix Official Site, http://www.knoppix.net, accessed
09/06/05.

[10] Earl Cox., The Fuzzy Systems Handbook, Academic Press, New
York, 1999.

©2006 WCCSETE March 19 - 22, 2006, São Paulo, BRAZIL
World Congress on Computer Science, Engineering and Technology Education

50

	Página Inicial:

